
AndRadar: Fast Discovery
of Android Applications in Alternative Markets

Martina Lindorfer1, Stamatis Volanis2, Alessandro Sisto3,
Matthias Neugschwandtner1, Elias Athanasopoulos2, Federico Maggi3,

Christian Platzer1, Stefano Zanero3, and Sotiris Ioannidis2

1 Secure Systems Lab, Vienna University of Technology, Austria
{mlindorfer,mneug,cplatzer}@iseclab.org

2 Institute of Computer Science, Foundation for Research & Technology – Hellas, Greece
sebolani@gmail.com,{elathan,sotiris}@ics.forth.gr

3 Politecnico di Milano, Italy
alessandro.sisto@mail.polimi.it,{federico.maggi,stefano.zanero}@polimi.it

Abstract. Compared to traditional desktop software, Android applica-
tions are delivered through software repositories, commonly known as
application markets. Other mobile platforms, such as Apple iOS and Black-
Berry OS also use the marketplace model, but what is unique to Android
is the existence of a plethora of alternative application markets. This com-
plicates the task of detecting and tracking Android malware. Identifying a
malicious application in one particular market is simply not enough, as many
instances of this application may exist in other markets. To quantify this phe-
nomenon, we exhaustively crawled 8 markets between June and November
2013. Our findings indicate that alternative markets host a large number of
ad-aggressive apps, a non-negligible amount of malware, and some markets
even allow authors to publish known malicious apps without prompt action.

Motivated by these findings, we present AndRadar, a framework for dis-
covering multiple instances of a malicious Android application in a set
of alternative application markets. AndRadar scans a set of markets in
parallel to discover similar applications. Each lookup takes no more than
a few seconds, regardless of the size of the marketplace. Moreover, it is
modular, and new markets can be transparently added once the search and
download URLs are known.

Using AndRadar we are able to achieve three goals. First, we can discover
malicious applications in alternative markets, second, we can expose app dis-
tribution strategies used by malware developers, and third, we can monitor
how different markets react to new malware. During a three-month evalu-
ation period, AndRadar tracked over 20,000 apps and recorded more than
1,500 app deletions in 16 markets. Nearly 8% of those deletions were related
to apps that were hopping from market to market. The most established
markets were able to react and delete new malware within tens of days from
the malicious app publication date while other markets did not react at all.

Keywords: Android, App Markets, Measurements, Malware Tracking

2 M. Lindorfer, S. Volanis, A. Sisto, M. Neugschwandtner et al.

1 Introduction

Due to its popularity with nearly 80% market share [15] and open model, Android
has become the mobile platform most targeted by cyber criminals. In spite of a
small infection rate [16,17] of devices with mobile malware in the wild, the remark-
able increase in the number of malicious applications shows that cyber criminals
are actually investing time and effort as they perceive financial gain. Indeed, the
typical malicious application includes Trojan-like functionalities to steal sensitive
information (e.g., online banking credentials), or dialer-like functionalities to call or
text premium numbers from which the authors are paid a commission. The degree
of sophistication of Android malware is rather low, although samples of current
malware families found in the wild include command-and-control functionalities and
attempt to evade detection with in-app downloads of the malicious payload after
the installation of a legitimate-looking application. Cyber criminals are focusing
more on widespread distribution and näıve signature evasion [23, 32] rather than
attack vector sophistication.

Seminal work by Zhou and Jiang [35] reported the existence of 49 distinct
malware families according to data collected between 2010 and 2012. Current
estimations vary widely, with McAfee reporting about 68k distinct malicious An-
droid applications [19] and Trend Micro counting up to 718k distinct Android
“threats” [27] in Q2 2013. However, security vendors and researchers agree that there
is an increasing trend of malicious Android apps spotted in the wild, which indicates
that the criminals consider this a source for profits. This phenomenon created a busi-
ness opportunity for new security companies, which according to Maggi et al. [18],
created about a hundred anti-malware applications for Android. Interestingly,
about 70% of such companies are new players in the antivirus (AV) market.

As with traditional malware, the research community has been focusing on ana-
lyzing suspicious programs to identify whether they are malicious or not. In the case
of Android, this requires analyzing the application package file (APK), a compressed
archive that contains resources (e.g., media files, manifest) and code, including
Dalvik executables or libraries, or native code (e.g., ARM or x86). Dynamic, static
and hybrid program analysis approaches have also been ported to Android. There is,
however, a key difference between traditional malware and Android malware. As we
will discuss in Section 2, Android malware is distributed through application market-
places, which means that there is a wealth of metadata associated with each sample,
in addition to the resources contained in each APK. Additional contextual infor-
mation comes from the infection mechanism, bait-an-switch, which uses an actual
benign application distributed through alternative marketplaces to attract victims.

Efficiency is a key requirement for monitoring malware campaigns in the large
Android ecosystem. However, we observe that meta information has not been fully
leveraged to this end. Indeed, as analyzed in Section 5, past works revolve around
features extracted from APK, which in turn implies that the sample is downloaded
and processed using static and dynamic analysis techniques, which is time and
space consuming.

Motivated by the need for tracking the distribution of Android malware across
markets, we follow a different approach and propose an alternative way to identify
them. We demonstrate that the combination of lightweight identifiers such as the

AndRadar: Fast Discovery of Android Applications in Alternative Markets 3

package name, the developer’s certificate fingerprint, and method signatures, creates
a very strong identifier, which allows us to track applications across markets. We
implemented our approach by building AndRadar, which uses a flexible workflow.
First, it applies lightweight fingerprinting to quickly determine if a known sample
has been found in a particular market. AndRadar postpones computationally
expensive tasks such as binary similarity calculation, so that they can be lazily
executed. This allows AndRadar to scan a full market for malware in real-time.
Using AndRadar we can infer useful insights about malicious app distribution
strategies and the lifetime of malware across multiple markets. For example, for a
total of 20,000 crawled apps AndRadar recorded more than 1,500 deletions across
16 markets in a period of three months. Nearly 8% of those deletions were related
to apps that were hopping from market to market, meaning the authors republished
their applications in one or more different markets after they were already deleted
from another market. Some markets reacted and deleted new malware within tens
of days from the publication date, whereas other markets did not react at all.
Interestingly, we were able to measure that the community reacts fast, flagging
applications as malicious faster than the market moderation in some cases.

In summary, we make the following contributions:

– We conducted an in-depth measurement on 8 alternative Android marketplaces.
In contrast to previous work, we collected the entire set of applications (318,515
overall), and not simply a random subset drawn from each market. With this
dataset, we provide preliminary insights on the role of these alternative markets,
with a focus on malicious or otherwise unwanted applications.

– We expand our set of observed markets and present AndRadar, a framework
for searching a set of markets, in real-time, in order to discover applications
similar to a seed of malicious applications. Using a set of distinctive fingerprints
that are robust to commonly used repackaging and signature-evasion techniques,
AndRadar can scan markets in parallel, and only needs a few seconds to discover
a given Android application in tens of alternative application markets.

– Using AndRadar we study and expose the publishing patterns followed by au-
thors of malicious applications on 16 markets. Moreover, our evaluation shows
that AndRadar makes harvesting marketplaces for known malicious or unwanted
applications fast and convenient.

2 Market Characterization

As we detail in Section 5, previous research shows that in 2011 the majority of
malicious or otherwise unwanted Android applications were distributed through
so-called alternative marketplaces. An alternative marketplace is any web service
whose primary purpose is to distribute Android applications. For instance, blogs or
review sites that occasionally distribute applications do not qualify as marketplaces.
According to our definition, we were able to find 894 markets as of June 2013. The
raison d’etre of such alternative markets depends on three main factors: country gaps
(i.e., the Google Play Store is inaccessible from certain countries), promotion (i.e.,

4 Although previous work reported 194 markets in 2011 [29], no details such as the URL
or name were mentioned.

4 M. Lindorfer, S. Volanis, A. Sisto, M. Neugschwandtner et al.

0

20

40

60

10 20 30
Number of positive AV detections

P
er

ce
nt

ag
e

of
 a

d−
/m

al
w

ar
e

on
 m

ar
ke

t

opera
andapponline
camangi
slideme
fdroid
blackmart
getjar
pandapp

0

2

4

6

8

10 20 30
Number of positive AV detections

P
er

ce
nt

ag
e

of
 m

al
w

ar
e

on
 m

ar
ke

t

opera
andapponline
camangi
slideme
fdroid
blackmart
getjar
pandapp

Figure 1: Percentage of applications on alternative markets classified as positives by
[1-32] AVs, including adware (left) and excluding adware (right).

markets tailored to help users find new interesting applications), and specific needs
(i.e., markets that publish applications would be bounced by the Google Play Store).

Regarding malware distribution, since the first measurements conducted in
2011 a lot has changed: Researchers, security vendors and media continuously raise
concerns about the explosive growth of Android malware. According to a recent
estimate [25], as of 2013 companies have invested about $9 billion in mobile device
and network security and installation of anti-malware software has become the
de-facto requirement for mobile devices.

2.1 The Role of Alternative Marketplaces

Given the above premises, we wanted to investigate whether alternative mar-
ketplaces employ any security countermeasure to avoid the spread of malicious
applications. To this end, we conducted a series of probing experiments, in July
2013, aimed at assessing the response of these markets to dangerous applications.
We submitted known malicious applications taken from the Android Malware
Genome Project [35] to 7 markets (i.e., andapponline, androidpit, appzoom, broth-
ersoft, camangi, opera, slideme) and analyzed their reaction. To deter users from
downloading the apps, we included explicit indications that they were malicious
and should not be installed. To the best of our knowledge (i.e., by tracking the
download counts), those apps were not downloaded. However, certain markets such
as andapponline never bounced/removed samples from 10 known families (e.g.,
DroidKungFu, BaseBridge). This motivated us to conduct a more thorough analysis.
Therefore, we crawled 8 alternative marketplaces between July and November 2013
entirely, obtaining 318,515 APKs along with their metadata, which varies across
markets (e.g., application name, version, uploader’s nickname, category, price,
download count, declared permissions). We then extended this crawling experiment,
including metadata from a larger set of markets, as described in Section 4.

2.2 Preliminary Findings

Using this initial collection of applications, we set out to answer a the following
questions.

Do alternative markets distribute known, unwanted applications? We
used VirusTotal to analyze our entire dataset. As illustrated in Figure 1, our
analysis showed that the infection rate is not negligible. Even if we exclude adware,
there are still about 5–8% malicious applications overall on the crawled markets

AndRadar: Fast Discovery of Android Applications in Alternative Markets 5

Label #

Android/Generic 2,397
Trojan/AndroidOS.eee 2,119

Trojan.AndroidOS.Generic.A 1,020
AndroidOS/Denofow.B 768
AndroidOS/Denofow.B 765

Suspect.Package.RLO 682
WS.Reputation.1 593

UnclassifiedMalware 555
Android/DrdLight.D!tr 517

AndroidOS/FakeFlash.C 455
Android-PUP/Hamob 443

AndroidOS/FakeFlash.C 428
Application:Android/FakeApp.C 358

Trojan:Android/Downloader.F 339
Andr.Trojan.Zitmo-2 223

Android/DDLight.D!tr 204
Trojan.AndroidOS.FakeFlash.a (v) 192

Android Airpush 182
AndroidOS/FakeFlash.A 174

Table 1: Top malware families found
overall.

andapponline camangi opera pandaapp slideme

0

50

100

150

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
Top 5 authors per market

N
um

be
r

of
 a

pp
s

pu
bl

is
he

d

Malware
Goodware

Figure 2: Top 5 authors ranked by number
of applications published.

(15,925–25,481 distinct applications detected by at least 10 AVs). This is clearly
an underestimation. Interestingly, some markets are specializing in distributing
adware. This finding is inline with Symantec’s recent report [28], which mentions the
“madware” phenomenon, the practice of creating ad-aggressive mobile applications
to obtain revenue.

We conducted the remaining preliminary experiments on the applications
marked as malicious, excluding adware. We list the ranking of the top families
found in Table 1.

Do alternative markets allow the publication of malicious applications?
Based on the number of applications published, we ranked the authors of those
5 markets that reported author information reliably (e.g., blackmart simply caches
that information from Google Play Store). Unfortunately, as shown in Figure 2,
these markets permit the top authors to freely to publish both malicious and benign
applications. This finding further amplifies the previous results, because top authors
are supposedly well visible and known to the market’s operators and community
due to the larger number of applications published with respect to other authors.

Do malicious applications have distinctive metadata? Previous work fo-
cused on devising static and dynamic features, extracted through program analysis
techniques (see Section 5) applied to the APK files, that characterize malicious
applications. However, given the central role of alternative markets in malware
distribution, we wanted to understand if malware can be identified solely by its
metadata, meaning all ancillary data available on each market (file size, download
count, etc.). As Figure 3 shows, due to repackaging, the file size is a feature to
consider: Statistically speaking, malware samples are slightly larger than goodware
samples because of the additional malicious code. Similarly, we observed that for
those markets that report the download count (e.g., getjar), malware are more
downloaded than goodware by at least an order of magnitude. One possible expla-

6 M. Lindorfer, S. Volanis, A. Sisto, M. Neugschwandtner et al.

0.00

0.25

0.50

0.75

1.00

0 10 20 30 40
APK file size (MB)

E
C

D
F

Goodware
Malware

Figure 3: APK file size comparison of
malware and goodware: malicious apps
are slightly larger than benign apps due to
repackaging.



















Figure 4: Intersection between markets by
MD5: percentage and thickness of edges
indicate the percentage of apps in common.

nation for this finding is that malware authors reportedly use app rank boosting
services to increase download numbers and thus improve their app’s ranking [13].

How are markets related to each other? We calculated the set intersection
of APKs across markets by taking the package name or the MD5 hash as the
identifier. Due to space constraints we only present the results for the latter in
Figure 4. although they both exhibit the same pattern. We can immediately see
that the number of shared apps across markets is non-negligible, with some notable
examples such as andapponline–opera sharing 47%/59% of MD5s/package names,
or andapponline–getjar sharing 26%/38% respectively.

Conclusion. From this preliminary analysis, it appears that alternative markets
are not proactively removing malicious applications from their databases. Under-
standably, the volume of applications to be screened is large and the current analysis
methods rely on running expensive and error-prone analyses on each submitted
APK. Moreover, given the non-negligible flow of applications across markets, we are
concerned that malicious developers may be able to implement a “failover” strategy
to have their samples migrate from market to market in order to hinder removal.

These findings motivate us to devise an Android market radar, called AndRadar.
AndRadar uses lightweight and transparent techniques that permit the quick scan-
ning of alternative markets for malicious or otherwise unwanted applications and
allow us to track apps and their metadata across different markets.

3 Android Market Radar (AndRadar)

In this section we present the architecture of AndRadar. First, we discuss various
challenges we faced while designing and implementing AndRadar, and then we
describe its various components in detail.

3.1 Challenges

AndRadar aims at discovering a particular Android application, possibly indicated
as malware or otherwise unwanted applications by an AV scanner, in the official
Google Play Store as well as alternative markets. This is a non-trivial task as we

AndRadar: Fast Discovery of Android Applications in Alternative Markets 7

show in this part. Below we list the most significant challenges we had to overcome,
while building the prototype.

Marketplaces Plethora. During our preliminary experiments discussed in Sec-
tion 2, we found 89 alternative marketplaces, run by companies or individuals, whose
quality in terms of security aspects is questionable. As demonstrated by our market-
place study, which took months to complete, crawling markets is challenging. First,
because space and time requirements increase quickly with the number of markets.
Secondly, and most importantly, each market runs its own software. This essentially
means that for each market we want to monitor we need to analyze its API for search-
ing and downloading apps. Normally, this involves discovering two URLs, one for
searching for an application and one for downloading a discovered application along
with its metadata. Unfortunately, for many markets this process is not straightfor-
ward. For example, many of them strictly require user authentication—especially
markets with specialized content, like adult content—or are provided in the form of
a mobile application, which needs manual reverse-engineering for revealing the mar-
ket API. Finally, while running AndRadar we also experienced cases where markets,
like for example Google Play and appchina, changed their web templates during our
experiments. Changes in a market’s web templates essentially requires for us to carry
out further adjustments in the engine we use for extracting application metadata.

Application Mutation. The diversity of the marketplaces is not the only chal-
lenge we have to overcome. Applications can slightly mutate from market to market.
This can be done due to legitimate reasons, for example two markets host two
different versions of a particular application, or because they are repackaged by
another author either to add additional functionality missing from the original
application, or to profit from a popular application by including advertising libraries
or malicious code [29]. Detecting repackaged applications, maybe the most popular
form of Android malware, has been the target of recent related work [7,33,34]. And-
Radar’s primal goal is not to detect if a particular application has been repackaged,
but locating an application – possibly malware – across different marketplaces.
Research in repackaged-application detection is orthogonal to AndRadar. Never-
theless, it can substantially assist AndRadar in discovering repackaged versions
of applications across different alternative markets. Recall that the common wis-
dom suggests that popular apps hosted in the official market are enhanced with
malicious functionality, repackaged and published to alternative marketplaces. We
envision that, due to the immediate popularity gained by alternative markets and
to the continuously growing defense systems in the official Google Play Store,
malware authors will further target alternative markets. Therefore we expect them
to start repackaging legitimate apps found in popular alternative markets and then
publishing the produced malware in less popular markets. In such cases, AndRadar
can use existing algorithms and heuristics for real-time detection of repackaged
applications across multiple marketplaces.

3.2 Architecture Overview

We now present an overview of AndRadar’s architecture. In a nutshell, AndRadar’s
task is to probe a number of marketplaces for malware and, if found, track it.
Figure 5 shows how the components of AndRadar interact to achieve this task.

8 M. Lindorfer, S. Volanis, A. Sisto, M. Neugschwandtner et al.

Metadata
Scraper

Downloader

Search

App
Metadata

Market
Specifications

Tracker
Seed

Figure 5: Overview of AndRadar’s architecture: The seed, which is composed by apps
that have been flagged as malware, is used as input to the search component for locating
apps across markets. Once an app is found, the tracker downloads and stores additional
metadata.

Essentially, AndRadar has three core components: The first one is the seed,
which is composed by a set of apps that have been flagged as malware by a set
of tools or services. This is the input set that AndRadar uses for locating apps
across alternative markets. The second component is the search component. For
each app in the seed, AndRadar uses a set of crawlers for discovering the app in
an alternative market. Finally, the third component is the tracker, which, once an
app is found, downloads its additional metadata and keeps it in storage for further
statistics. We now look into each of the three components in detail.

3.3 Seed Sources and Content

To begin with, AndRadar requires a set of known malware or otherwise unwanted
applications that we call the seed. Because of its dynamic, online functionality,
AndRadar works best with a continuous, accumulating feed of malicious apps in
contrast to a static set. Apps for the seed can come from a variety of sources includ-
ing new additions to manually vetted malware repositories, feeds from submissions
to AV scanning services that are detected by multiple scanners as malicious, or
submissions to dynamic analysis sandboxes.

For our prototype AndRadar receives feeds from VirusShare [2], submissions to
VirusTotal [3] that trigger > 10 AV signatures, and submissions that Andrubis [1,30]
flagged as suspicious during dynamic analysis. However, AndRadar could be easily
extended to add further sources for malware such as submissions to AndroTotal [18].

Each app in the seed is characterized by four identifiers that allow us to match
two apps at different levels of confidence (see Table 2 for a summary):

Package name. The package name is the “official” identifier of an app. It serves
as an installation-time ID, i.e., no two apps on a given device can share the same
package name. Some markets, such as Google Play, use it also as a unique reference,
but in principle developers are not restricted from creating an app with an already
existing package name. Therefore, in the context of AndRadar which operates on a
multi-market domain, we use the package name to locate apps inside a market (see
Section 3.4) and treat it as a weak match between two apps. However, AndRadar
is not restricted to this identifier as we further will discuss in Section 6.

Fingerprint. Apps in Android are signed with the private key of their developer.
Android uses this certificate to enforce update integrity by only allowing updates
signed with the same key, as well as sharing of resources and permission inheritance

AndRadar: Fast Discovery of Android Applications in Alternative Markets 9

between apps from the same author [4]. We can thus use the fingerprint of the
certificate used to sign the app as a further identifier. Since the key is specific to
an author, a match of the fingerprint is a strong indicator that the matching apps
stem from the same author, unless the author has shared her private key or the
author is using the key pair that is publicly available with the Android source code.
We thus treat a match of package name and author fingerprint as a strong match.

Method signatures. By leveraging Androguard [8,22] we can generate signatures
of the methods in the application code. A signature is an abstract model of a
method’s intraprocedural control flow, enriched with information on the package
of further called methods. To compare signatures, Androguard uses the normal-
ized compression distance. For AndRadar, we limit the scope of the signatures
to methods that are either in the main package or in the package that contains
the app’s main activity, thus excluding third-party libraries that and would skew
the comparison results. We define everything above a 90% code similarity to be
a strong match. In addition, we define the combination of a method signature,
fingerprint and package name match as a very strong match.

MD5 hash. In a very straightforward way, a match between the MD5 hash of
two APK files means that two applications are identical, i.e. a perfect match.

App identifier Match level

MD5 perfect match
Package name, fingerprint, method signatures very strong match
Package name, method signatures strong match
Package name, fingerprint strong match
Package name weak match

Table 2: Different match levels based on app identifiers.

3.4 Search

The search component probes markets for a given app, based on its package name.
We chose the package name for our searching procedure, since it provides a strong
heuristic in order to identify a sample based in a seed entry inside a market and some
markets use it to uniquely identify apps in their app catalog. Of course, as we discuss
in Section 6, a malware author could randomize the package name from market to
market, but this would actually run against the malware author’s own scheme when
trying to trick users into downloading his repackaged version of a popular application.
Thus essentially, a malicious app trying to remain hidden from AndRadar would
substantially reduce its visibility to potential victims. As a future extension, we may
add options to search for words appearing in the title, or through other metadata
that users might use to locate an application inside a market. This, however,
would require AndRadar to track and download multiple candidate apps and their
metadata from each market in order to locate samples matching the seed application.

For markets such as Google Play, appchina, anzhi, wandoujia or coolapk, that
use the package name as an internal reference to the apps the lookup is straight-
forward, as the package name is typically part of the app’s URL in the market.
Other markets use different internal identifiers and thus require a more elaborate
search procedure. In that case we split the package name along the separators and

10 M. Lindorfer, S. Volanis, A. Sisto, M. Neugschwandtner et al.

feed the individual parts to the market’s search interface, discarding well-known
common parts such as, e.g., “com”. Once the package name is located on the results
page, the search is considered finished. Otherwise, we continue by crawling the
individual market listings that are returned by the search query.

Finally, based on an author’s publishing habit, apps might appear in our seed
and later be released to a new market at a later point in time. As a consequence the
search component probes all the markets for all malicious apps at regular intervals
regardless whether they have been located before or not.

3.5 Tracking

Once the search component finds an app in a market, the corresponding market list-
ing will be investigated by the tracker. The tracker first invokes the downloader to
fetch the sample from the market. The downloaded app is matched with the sample
in the seed using the set of similarity features summarized in Table 2. In Figure 6
we present the flow chart of AndRadar’s matching algorithm. The tracker uses the
scraper to obtain market-based metadata of each sample, from each monitored mar-
ket at regular intervals. Metadata includes the reported version of an app as well as
its popularity metrics such as download count, price, user ratings and reviews, up-
date date, delete date, etc. If an app’s metadata information has changed, indicating
a possible update, the new version of the app is downloaded and kept in storage.

MD5 match? fingerprint
match?

a.b.c
MD5

part of
seed

a.b.c
MD5'
from

market

method signature
match?

perfect match
same application

weak match
N N

Y

Y

strong match
different application

by same author

N

Y

strong match
repacked version

method signature
match?

very strong match
different version by

same author

Y

N

Figure 6: Flow chart of AndRadar’s application matching.

4 Evaluation and Case Study

In this section we evaluate AndRadar in terms of performance, and use the system
to reveal insights about the behavior of particular applications, characterized as
possibly malware, across multiple markets.

4.1 Performance

AndRadar tracks apps in multiple markets in a parallel fashion. For the purposes
of the study presented in this paper, we have incorporated 16 different markets.
The time needed to search and download a particular app across all the markets
is illustrated in Figure 7. Naturally, downloading is slower than searching, but
both operations take just a few seconds to complete for the majority of markets.
However, the download of an app is only initiated when the metadata information
indicates a possible update. Furthermore, both operations depend on the network
conditions, as well as the load the market is experiencing at the time, but since

AndRadar: Fast Discovery of Android Applications in Alternative Markets 11

AndRadar crawls all markets in parallel, we are only constrained by the slowest
market. We list the amount of apps we can track in each market per day in Table 3.
As it can be seen we are able to track tens of thousands of apps daily.

 1

 10

 100

 1000

 10000

 100000

appchina

google-play

aptoide

slidem
e

yingyong

w
andoujia

anzhi

yaam
1m

obile

f-droid

nduoa

appszoom

m
oborobo

lenovo

z-android

T
im

e
 (

m
s
)

Search time Download time

Figure 7: Average time needed for searching
and downloading an app on each market.
Since AndRadar handles all markets in parallel,
searching and downloading a particular app on all
markets is constrained by just the slower market.

Market S D Total #/day

f-droid 0.49s 0.24s 0.73s 118163
yaam 0.43s 0.67s 1.11s 77996

slideme 1.30s 0.88s 2.18s 39662
z-android 0.27s 1.93s 2.20s 39319
appszoom 2.23s 0.59s 2.82s 30605

google-play 1.06s 2.79s 3.85s 22441
aptoide 1.67s 2.41s 4.08s 21199
1mobile 0.79s 4.20s 4.99s 17305

moborobo 0.57s 4.83s 5.40s 15994
appchina 2.13s 11.36s 13.49s 6406

anzhi 1.80s 18.69s 20.49s 4217
nduoa 13.06s 38.18s 51.25s 1685

wandoujia 0.76s 53.65s 54.41s 1587
lenovo 1.08s 111.43s 112.51s 767

yingyong 1.80s 119.56s 121.35s 711

Table 3: Average time needed for
searching (S) and downloading (D) an
app on each market and number (#)
of apps we can track in each market
per day.

4.2 Case Study

AndRadar essentially gives us the opportunity to collect data about an app in mul-
tiple markets, study the multi-market behavior of the app, and, possibly, identify
publishing patterns followed by app developers. For instance, if we use AndRadar
with a sample of (possibly) malicious apps, we can understand better how malicious
apps behave across different markets. In this section, we present the insights we
obtained by crawling 20,000 apps in a daily manner between August and December
2013 in 16 markets. These apps matched applications in our seed at least by package
name and were identified according to the process described in Section 3.

For the purpose of this case study we split the sample of tracked apps in two
sets: a) deleted, a set that contains all apps that have been deleted at least once
from a market during our observation period, and b) non-deleted, a set of apps
that have never been deleted from any of the markets.

Since AndRadar checks each app located in one of the markets against the
malicious app from the original seed using a set of similarity features (detailed in
Table 2 and Figure 6), we have a spectrum of confidence regarding the maliciousness
of the collected apps. In Figure 8 we plot the distribution of the collected dataset
(across both deleted and non deleted apps) against the similarity features used.

If we identify an app with a perfect match (MD5) that is removed after a period
of time (corresponding to the black bar in the deleted group in Figure 8), we assume
that the market administrators did this for a reason and found something something
malicious bout the app, thus strengthening our initial suspicion. Conversely, on

12 M. Lindorfer, S. Volanis, A. Sisto, M. Neugschwandtner et al.

 1

 10

 100

 1000

Deleted Non-deleted

M
a

tc
h

 c
o

u
n

t

MD5
Fingerprint+Similarity

Similarity
Fingerprint

Package name

Figure 8: Number of deleted and non-
deleted apps per matching type across all
markets.

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1 2 3 4 5 6 7 8

C
D

F

Number of markets

Deleted

Non-deleted

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 1 2 3 4 5 6 7 8

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 1 2 3 4 5 6 7 8

Figure 9: Deleted and non-deleted appli-
cations located in multiple markets at the
same point in time.

a weak package name match, a missing reaction from the market administrators
(corresponding to the white bar in the non-deleted group in Figure 8) indicates
that the app located in the market is the benign version the author of the malicious
seed app used as a disguise.

In Figure 9 we plot the CDF of the two sets, deleted and non-deleted apps,
over the number of markets each app has been located on by AndRadar at the
same point in time. This figure justifies our initial concern that malware authors
indeed leverage the plethora of app markets to distribute malware. A non-negligible
portion of apps simultaneously leverages more than five markets for distribution
(roughly 1/3 of the markets we have been monitoring). As an example, we were
able to locate the malicious app King Pirate (com.letang.game101.en.f) in five
different markets. In some of those markets the app has been available for over a
year and thus reached a considerable amount of downloads. To date it was only
deleted from one of the markets we monitored:

1. appchina: online since 15-03-2012, 1,000-5,000 downloads
2. aptoide: online since 25-05-2012, 270 downloads
3. wandoujia: online since 12-08-2012, 1,430 downloads
4. 1mobile: online since 26-07-2013, 25,808 downloads
5. lenovo: online from 17-10-2012 to 18-10-2013

The app advertises itself as a legitimate game available in the Google Play
Store5. The repackaged version adds the functionality to manipulate SMS, install
additional packages, and perform payments to the original game. It was first
submitted to VirusTotal in September 2012, flagged by the first AV scanners in
December 2012, and since then identified by 16 scanners as a Trojan horse, under
the names Android/Ksapp.D or Android/Qdplugin.A. Clearly, in cases like this,
it is desirable for market operators to remove the application from their catalog as
soon as possible. To aid them in doing so, we are going to integrate an automated
notification system into AndRadar.

5 https://play.google.com/store/apps/details?id=com.letang.kpe

AndRadar: Fast Discovery of Android Applications in Alternative Markets 13

tpub tav tdel

community
reaction time

market
reaction time

first crawl date
app

published
in market

app
detected
by AVs

app
deleted

from market

community reaction time

(a) Normal Lifecycle: An app
is deleted from a market after
it has been flagged by AVs.

tav tpub tdel

market
reaction time

first crawl date
app

detected
by AVs

app
published
in market

app
deleted

from market

community reaction time

(b) Malware Hopping: An
app is published to a market
after it already has been
flagged by AVs.

community reaction time

tpub tdel tav

market
reaction time

first crawl date
app

published
in market

app
deleted

from market

app
detected
by AVs

(c) Market Self-Defense: An
app is deleted from a market
before it has been flagged by
AVs.

Figure 10: Patterns for the lifecycle of a malicious app in a market.

Type Number Percentage

Normal 1,508 90.57%
Possibly Malware Hopping 131 7.86%

Possibly Market Self-Defense 26 1.56%

Table 4: Distribution of the lifecycle patterns
presented in Figure 10 for all deleted apps: The
large majority of apps follows the “Normal” case,
but we also found evidence of market hopping
and market self-defense.

Market Deleted Apps

google-play 1281
appchina 236

anzhi 83
wandoujia 48

lenovo 15
1mobile 1
aptoide 1

Table 5: Distribution of deleted
apps across markets.

Finally, we take a look at how fast both the security community and the applica-
tion markets react to new malware and whether a multi-market strategy enhances
the lifetime of malware. We identified three typical patterns for the lifecycle of a
malicious app:

Normal. In the most common case, an app is first published in a market at tpub,
it is later identified by the community and flagged by (some) AVs at tav, and at
a later point deleted from the market at tdel. We define as the community reaction
time the period tav − tpub and as market reaction time the period of tdel − tav. We
depict this behavior in Figure 10 (a).

Malware Hopping. In this scenario, malicious apps are republished in different
markets after they have been flagged as malware by AVs. In this pattern, an app
is published in a market at tpub, but has been identified by the community at an
earlier point tav. At a later point the app is deleted from the market at tdel. We
define the period of tdel− tpub as the market reaction time. We depict this behavior
in Figure 10 (b).

Market Self-Defense. Markets can sometimes filter malicious apps even before
they are flagged by AVs. In some instances, an app is published in a market at tpub,
at a later point the app is deleted from the market at tdel, and at even a later point
the app is flagged as malware by AVs. Again, tdel − tpub is the market reaction
time. We depict this behavior in Figure 10 (c).

We present the distribution of all deleted apps among these three scenarios in
Table 4. The majority of apps follow the “Normal” case, but AndRadar could also

14 M. Lindorfer, S. Volanis, A. Sisto, M. Neugschwandtner et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700

C
D

F

Days for detection

google-play
appchina

anzhi
 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100 200 300 400 500 600

C
D

F

Days for deletion

google-play
appchina

anzhi

Figure 11: Time needed for AVs to detect apps as malware (community reaction time,
left) and time needed for markets to delete apps after they have been flagged as malware
(market reaction time, right).

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

09/01 09/15 10/01 10/15 11/01 11/15 12/01

N
um

be
r o

f d
el

et
ed

 a
pp

s

Figure 12: Number of apps deleted from Google Play on a daily basis between September
and December 2013.

identify apps that followed the other two cases, finding evidence that malicious
apps jump from market to market, possibly for survival, and also evidence that
some markets remove apps using some internal security mechanism.

For all deleted apps that follow case (a) in Figure 10 we measured the commu-
nity reaction time, which is the time needed for AVs to flag a particular app, once
this app was published in a market, and the market reaction time, which is the
time needed for a market to delete an app that was flagged by an AV as malware.
We present the distribution of app deletions per market in Table 5 and we depict
the results for the three markets that deleted the most applications in Figure 11.
The following insights can be gained from this figure:

First, each market has a different reaction behavior. It is evident that apps
that are published in Google Play reach the AVs community faster than those in
other markets. The majority of Google Play apps are submitted to AVs just a few
days after publication.

Second, Google Play is also the fastest market to react when apps are flagged
as malicious by AVs. It takes tens of days for Google to delete the malicious apps.
The other two markets (appchina and anzhi) have a similar, but slower, behavior.

Third, there is a small but not negligible fraction (less than 4%) of apps which
are deleted from markets only after several months (in some cases after more than a
year). After manual inspection of these incidents, we discovered that such malicious
apps fall into the gray area of adware, and are thus sometimes considered not
dangerous enough to be removed. For example, due to policy changes Google only
recently decided to remove apps including intrusive ad libraries such as AirPush
from the Play Store [24]. In another recent example, researchers discovered “vulnag-

AndRadar: Fast Discovery of Android Applications in Alternative Markets 15

gressive” (aggressive and vulnerable) versions of the ad library AppLovin being used
in popular apps, that were subsequently updated or removed [31]. As illustrated in
Figure 12, developments like this can be recorded by AndRadar. Google seems to
clean its store in regular intervals, with the number of deletions increasing after the
market policy changes came into effect at the end of September and the vulnerabili-
ties in AppLovin were disclosed. In fact, out of the 1,749 apps for which we recorded
deletion events on Google Play between August 28 and December 4 2013, 1,517
apps are detected at least by one AV scanner as adware. Almost 90% of those apps
include libraries such as AirPush, Leadbolt, AdWo and Apperhand, that display
push notification ads [26] now being banned by Google’s new policy. Some of those
applications were in the market for up for more than a year and were downloaded
between 100,000 and 500,000 times. For example, the application with package
name com.airbit.soft.siii.oceano was deleted from Google Play after 409
days of its upload date and it is flagged by many AV vendors as an AirPush adware.

5 Related Work

Android security has been covered extensively in the literature [9] and is still a ma-
jor research topic. Furthermore, many generic measurements of mobile application
marketplaces have been conducted such as a recent study by Petsas et al. [21], but
we will focus on the ones related to malware.

The practice of repackaging applications was studied in DroidMOSS [34], where
the authors propose a fuzzy hashing similarity metric to compare two APKs and
determine whether one is the repackaged version of the other. With their tool, the
authors determined in March 2011 that 5–13% of applications found on 6 alternative
marketplaces (slideme, freewarelovers, eoemarket, goapk, softportal, proandroid)
contain repackaged versions of applications obtained from the Google Play Store.

The approach proposed in Juxtapp [14] determines whether applications contain
instances of known, flawed code, exhibit code reuse that indicates plagiarism, piracy,
or are (repackaged) variants of known malware. Differently from DroidMOSS [34],
this approach does not explicitly concentrate on repackaging (although it effectively
finds repackaged applications), thus it is more generic. Moreover, it has a strong
focus on scalability, proposing a similarity metric that is applicable to map-reduce
frameworks. They show that 100 minutes of computation on 100 8-core machines
with 64GB of RAM are sufficient to analyze 95,000 distinct APKs. Unfortunately,
obtaining the APKs is the bottleneck, as we showed in Section 4.1.

Vidas et al. [29] conducted a large-scale measurement on 194 alternative An-
droid markets (of which a list was not disclosed, to the best of our knowledge) in
October 2011, collecting 41,057 applications. Their key finding was that certain
markets almost exclusively distribute repackaged applications containing malware.
They propose to counteract the spread of repackaged applications by re-designing
how markets authenticate submitted applications. All three approaches [14, 29, 34]
require downloading the APKs, and processing their manifest and code offline. As
a result, for instance in the study by Vidas et al. [29], which is by far the most
extensive of the three, the numbers suggest that the authors have sampled only an
average of 211 applications per market, that is, very few compared to the overall
market sizes. With our lightweight market monitoring technique we can monitor

16 M. Lindorfer, S. Volanis, A. Sisto, M. Neugschwandtner et al.

even the biggest alternative markets such as lenovo, containing around 400,000
applications, or the official Google Play Store with around 800,000 applications [20].

The authors of DroidRanger [36] proposed a permission-based and bytecode-
based fingerprinting approach to tell malicious and benign applications apart.
With this approach they conducted a measurement on 5 markets (including the
Google Play Store) in May 2011, analyzed 204,040 applications, and determined
that 211 applications were exhibiting a malicious pattern. In the same fashion,
RiskRanker [12] tries to identify certain behaviors – observed in malware – in a
given app and associate a risk with it. Both of these works focus on finding or
inferring malware on markets; we took a step further, proposing an approach that
is fast enough to allow tracking malware across markets over time.

Building on the aforementioned findings, Zhou et al. [33] propose an approach
to decouple primary from non-primary application modules. The authors observe
that the malicious payload, which is piggybacked to legitimate applications, simply
adds non-primary modules. Based on this, they propose a feature vector able to tell
repackaged applications and their respective legitimate applications apart. They
applied their technique to 84,767 applications collected from 7 markets (slideme,
freewarelovers, eoemarket, goapk, softportal, proandroid, Google Play Store) in
March 2011, and reported that the practice of repackaging apps ranges between
0.97 and 2.7%.

MAST [5] has a goal similar to ours: Finding fast analysis techniques that scale
to match the extensiveness of today’s markets. MAST is trained on a small set of
benign and malicious applications, from which features such as permissions, intents,
or native code information are extracted. Then, it uses multiple correspondence
analysis (MCA) to triage new applications.

Quantifying the similarity between two Android applications is currently an
active research topic. Ready-to-use tools such as Androsim [22], part of Andro-
guard project [8], can assist reverse engineers, but exhibit accuracy and scalability
issues. Proposed almost concurrently with Juxtapp [14], DNADroid [7] leverages
information from the dependency graph to create a structural comparison criterion
based on graph isomorphism, which allows to find pairs of matching methods to
detect plagiarized applications. Although their goal are different from ours, their
methods can in principle be applied to track malware across markets.

Another example of applying plagiarism detection is described in AdRob [6,11],
where the authors concentrate on the problem of ad-aggressive applications. Indeed,
repackaging (paid) applications to incorporate ad libraries and distribute the result-
ing applications on alternative markets seems to be a profitable, illicit business. The
authors’ estimations were based on monitoring the HTTP advertising traffic gener-
ated by 265,359 applications obtained from 17 alternative markets. As ad-based rev-
enue models are not considered malware, this work is orthogonal to ours. Indeed, in
our preliminary market characterization described in Section 2 we explicitly removed
adware samples. Moreover, their work depends on a static and dynamic analysis
phase, which is more expensive than our lightweight, metadata-based approach.

The main difference of related work with AndRadar, is that other approaches all
focus on crawling (a subset of applications on) alternative markets and performing
expensive static and dynamic analysis on APK files, in many cases with modified

AndRadar: Fast Discovery of Android Applications in Alternative Markets 17

Android platforms. Contrarily, our system requires just a public interface to query
apps in a market, and is therefore much faster, scalable and lightweight.

6 Limitations and Future Work

For our prototype AndRadar was configured to discover apps by their package
name as the monitored markets uniquely identify applications by this identifier.
Also, previous work reported that that malware authors tend to use valid and legit-
imate looking package names in an effort not to attract attention [29, 35]. A recent
report by F-Secure [10] found 23% of malicious apps posing as legitimates ones by
imitating their package name. Consequently, they classified apps using the original
package and application name but requesting additional permissions compared to
the original application as malicious. Alternatively, in order to counter malicious
app authors randomizing the package name or simply modifying single letters
similar typosquatting, AndRadar can query markets for other identifiers. Possible
candidates are application titles, parts of their description or image characteristics
of the screenshots advertising the apps functionality. In order to attract users and
entice them into downloading their apps, malicious authors need an identifiable
“brand”, e.g. by piggybacking on popular apps from the official market. Thus, if
malicious authors decide to evade the discovery of their apps by AndRadar, this
would invariably lower their visibility to users.

Current binary similarity measurements for Android exhibit accuracy and scala-
bility issues. AndRadar tries to mitigate this limiting the scope of the comparison to
the main application’s code, and by lazily executing such computationally expensive
tasks. However, due to its flexible architecture, AndRadar can be extended to use
more scalable binary comparison techniques and also include other characteristics
from apps’ resources or their visual similarity.

For future work we can incorporate an automatic notification system that
warns market operators about the presence of malicious applications in their app
catalog. Depending on the type of match of the application found in the market
with the application in the original malicious seed, AndRadar can issue warnings
with different levels of confidence. Furthermore, we plan to offer the app discovery
mechanism of AndRadar through a public interface in order to allow security
researchers and developers concerned about plagiarized versions of their apps to
search alternative markets in real-time.

Finally, since AndRadar tracks different versions of a malicious applications
across markets, as well as updated versions of an application in a single market,
we can leverage this data to identify further publishing patterns and the evolution
of the malicious functionality over time in future work.

7 Conclusion

Our work started from an in-depth measurement performed on 8 alternative An-
droid marketplaces, by collecting their entire set of applications and analyzing
various characteristics. This measurement provided us with significant preliminary
insights on the role of these alternative markets, with a focus on malicious or
otherwise unwanted applications. This is by far the most up-to-date measurement

18 M. Lindorfer, S. Volanis, A. Sisto, M. Neugschwandtner et al.

of the alternative marketplaces. Even the most recent work that we surveyed is
based on data collected back in 2011.

Our findings motivated us to design and implement AndRadar, a complete
framework to monitor alternative markets for malware in real-time, leveraging
the wealth of metadata associated with each sample. We demonstrated that the
combination of lightweight identifiers such as the package name, the developer’s
certificate fingerprint, and method signatures, creates a very strong identifier, which
allows us to track applications across markets.

Thanks to the efficiency by design of AndRadar, we were able to measure the
lifetime of malware across multiple markets in real-time. For example, we tracked
more than 1,500 app deletions across 16 markets over a period of three months. We
discovered that nearly 8% of the deletions were related to apps that were hopping
from market to market.

AndRadar was also able to identify and track malicious apps still available
in a number of alternative app markets. For future work we plan to integrate an
automated notification system into our framework, that informs market operators
about potentially malicious applications in their catalog. We believe that efforts such
as ours can be successfully leveraged by official marketplaces to “predict” upcoming
spreads, so as to provide early warnings and prompt remediations. Indeed we found
out that, for some markets (i.e., Google Play Store), the community contribution
is essential to quickly react against published malicious or unwanted apps.

Furthermore, we can also leverage the different versions of malicious apps that
AndRadar tracks to identify further publishing patterns as how malware authors
change the malicious functionality of their apps over time. This is part of our future
work.

Acknowledgments. This work was supported in part by the project ForToo,
funded by the Directorate-General for Home Affairs under Grant Agreement No.
HOME/2010/ISEC/AG/INT-002 and by the FP7 projects NECOMA, OPTET,
SysSec, under Grant Agreements No. 608533, No. 317631 and No. 257007. It was
also supported in part by the FP7-PEOPLE-2010-IOF project XHUNTER, No.
273765, MIUR FACE Project No. RBFR13AJFT, and FFG – Austrian Research
Promotion under grant COMET K1.

References

1. Anubis: Analyzing Unknown Binaries. http://anubis.iseclab.org

2. VirusShare. http://www.virusshare.com

3. VirusTotal. http://www.virustotal.com

4. Barrera, D., Clark, J., McCarney, D., van Oorschot, P.C.: Understanding and
Improving App Installation Security Mechanisms Through Empirical Analysis of
Android. In: Proceedings of the 2nd ACM CCS Workshop on Security and Privacy
in Smartphones and Mobile Devices (SPSM) (2012)

5. Chakradeo, S., Reaves, B., Traynor, P., Enck, W.: MAST: Triage for Market-scale
Mobile Malware Analysis. In: Proceedings of the 6th ACM Conference on Security
and Privacy in Wireless and Mobile Networks (WiSec) (2013)

AndRadar: Fast Discovery of Android Applications in Alternative Markets 19

6. Chen, H.: Underground Economy of Android Application Plagiarism. In: Proceedings
of the 1st International Workshop on Security in Embedded Systems and Smartphones
(SESP) (2013)

7. Crussell, J., Gibler, C., Chen, H.: Attack of the Clones: Detecting Cloned Applications
on Android Markets. In: Proceedings of the 17th European Symposium on Research
in Computer Security (ESORICS) (2012)

8. Desnos, A., Gueguen, G.: Android: From Reversing To Decompilation. In: Black
Hat Abu Dhabi (2011)

9. Enck, W., Octeau, D., McDaniel, P., Chaudhuri, S.: A Study of Android Application
Security. In: Proceedings of the 20th USENIX Security Symposium (2011)

10. F-Secure: Threat Report H2 2013. http://www.f-secure.com/static/doc/labs_
global/Research/Threat_Report_H2_2013.pdf (March 2014)

11. Gibler, C., Stevens, R., Crussell, J., Chen, H., Zang, H., Choi, H.: AdRob: Examining
the Landscape and Impact of Android Application Plagiarism. In: Proceedings
of 11th International Conference on Mobile Systems, Applications and Services
(MobiSys) (2013)

12. Grace, M., Zhou, Y., Zhang, Q., Zou, S., Jiang, X.: RiskRanker: Scalable and Accurate
Zero-day Android Malware Detection. In: Proceedings of the 10th International
Conference on Mobile Systems, Applications, and Services (MobiSys) (2012)

13. Gu, L.: The Mobile Cybercriminal Underground Market in China. Tech.
rep., Trend Micro (March 2014), http://www.trendmicro.com/cloud-

content/us/pdfs/security-intelligence/white-papers/wp-the-mobile-

cybercriminal-underground-market-in-china.pdf

14. Hanna, S., Huang, L., Wu, E., Li, S., Chen, C., Song, D.: Juxtapp: A Scalable System
for Detecting Code Reuse Among Android Applications. In: Proceedings of the 9th
Conference on Detection of Intrusions and Malware & Vulnerability Assessment
(DIMVA) (2012)

15. IDC: Apple Cedes Market Share in Smartphone Operating System Market as
Android Surges and Windows Phone Gains. http://www.idc.com/getdoc.jsp?

containerId=prUS24257413 (August 2013)
16. Lever, C., Antonakakis, M., Reaves, B., Traynor, P., Lee, W.: The Core of the

Matter: Analyzing Malicious Traffic in Cellular Carriers. In: Proceedings of the 20th
Annual Network & Distributed System Security Symposium (NDSS) (2013)

17. Ludwig, A., Davis, E., Larimer, J.: Android - Practical Security From the Ground
Up. In: Virus Bulletin Conference (2013)

18. Maggi, F., Valdi, A., Zanero, S.: AndroTotal: A Flexible, Scalable Toolbox and Service
for Testing Mobile Malware Detectors. In: Proceedings of the 3rd Annual ACM CCS
Workshop on Security and Privacy in Smartphones and Mobile Devices (SPSM) (2013)

19. McAfee Labs: McAfee Threats Report: Second Quarter 2013. http://www.mcafee.
com/us/resources/reports/rp-quarterly-threat-q2-2013.pdf (August 2013)

20. One Platform Foundation: List of Android Appstores. http://www.onepf.org/

appstores/

21. Petsas, T., Papadogiannakis, A., Polychronakis, M., Markatos, E.P., Karagiannis, T.:
Rise of the Planet of the Apps: A Systematic Study of the Mobile App Ecosystem. In:
Proceedings of the 2013 Conference on Internet Measurement Conference (IMC) (2013)

22. Pouik, G0rfi3ld: Similarities for Fun & Profit. Phrack Magazine 14(68) (2012)
23. Rastogi, V., Chen, Y., Jiang, X.: DroidChameleon: Evaluating Android Anti-malware

Against Transformation Attacks. In: Proceedings of the 8th ACM SIGSAC Symposium
on Information, Computer and Communications Security (ASIACCS) (2013)

24. Ruddock, D.: Google Pushes Major Update To Play Developer Content
Policy, Kills Notification Bar Ads For Real This Time, And A Lot More.

20 M. Lindorfer, S. Volanis, A. Sisto, M. Neugschwandtner et al.

http://www.androidpolice.com/2013/08/23/teardown-google-pushes-major-

update-to-play-developer-content-policy-kills-notification-bar-ads-

for-real-this-time-and-a-lot-more/ (September 2013)
25. Signals and Systems Telecom: The Mobile Device & Network Security Bible: 2013–2020.

Tech. rep. (September 2013), http://www.reportsnreports.com/reports/267722-
the-mobile-device-network-security-bible-2013-2020.html

26. Simon, Z.: Adwares. Are they viruses or not? http://androidmalwareresearch.

blogspot.gr/2012/07/adwares-are-they-viruses-or-not.html (July 2012)
27. Trend Micro: TrendLabs 2Q 2013 Security Roundup. http://www.trendmicro.

com/cloud-content/us/pdfs/security-intelligence/reports/rpt-2q-2013-

trendlabs-security-roundup.pdf (August 2013)
28. Uscilowski, B.: Mobile Adware and Malware Analysis. Tech. rep., Symantec (October

2013), http://www.symantec.com/content/en/us/enterprise/media/security_
response/whitepapers/madware_and_malware_analysis.pdf

29. Vidas, T., Christin, N.: Sweetening Android Lemon Markets: Measuring and
Combating Malware in Application Marketplaces. In: Proceedings of the 3rd ACM
Conference on Data and Application Security and Privacy (CODASPY) (2013)

30. Weichselbaum, L., Neugschwandtner, M., Lindorfer, M., Fratantonio, Y., van der
Veen, V., Platzer, C.: Andrubis: Android Malware Under The Magnifying Glass.
Tech. Rep. TR-ISECLAB-0414-001, Vienna University of Technology (2014)

31. Zhang, Y., Xue, H., Wei, T., Song, D.: Monitoring Vulnaggressive Apps on
Google Play. http://www.fireeye.com/blog/technical/2013/11/monitoring-

vulnaggressive-apps-on-google-play.html (November 2013)
32. Zheng, M., Lee, P., Lui, J.: ADAM: An Automatic and Extensible Platform to

Stress Test Android Anti-virus Systems. In: Proceedings of the 10th Conference on
Detection of Intrusions and Malware & Vulnerability Assessment (DIMVA) (2013)

33. Zhou, W., Zhou, Y., Grace, M., Jiang, X., Zou, S.: Fast, Scalable Detection of
”Piggybacked” Mobile Applications. In: Proceedings of the 3rd ACM Conference
on Data and Application Security and Privacy (CODASPY) (2013)

34. Zhou, W., Zhou, Y., Jiang, X., Ning, P.: Detecting Repackaged Smartphone
Applications in Third-Party Android Marketplaces. In: Proceedings of the 2nd ACM
Conference on Data and Application Security and Privacy (CODASPY) (2012)

35. Zhou, Y., Jiang, X.: Dissecting Android Malware: Characterization and Evolution.
In: Proceedings of the 33rd IEEE Symposium on Security and Privacy (2012)

36. Zhou, Y., Wang, Z., Zhou, W., Jiang, X.: Hey, You, Get Off of My Market: Detecting
Malicious Apps in Official and Alternative Android Markets. In: Proceedings of the
19th Annual Network & Distributed System Security Symposium (NDSS) (2012)

Appendix

AndRadar: Fast Discovery of Android Applications in Alternative Markets 21

Marketplace Website S R

1mobile www.1mobile.com X
andapponline www.andapponline.com X
anzhi www.anzhi.com X
appchina www.appchina.com X
appszoom www.appszoom.com X
aptoide www.aptoide.com X
blackmart www.blackmart.altervista.org X
camangi www.camangimarket.com X
coolapk www.coolapk.com X
f-droid f-droid.org X X
getjar www.getjar.mobi X

Marketplace Website S R

google-play play.google.com X
lenovo app.lenovo.com X
moborobo store.moborobo.com X
nduoa www.nduoa.com X
opera apps.opera.com X
pandaapp download.pandaapp.com X
slideme slideme.org X X
wandoujia www.wandoujia.com X
yaam yaam.mobi X
yingyong www.yingyong.so X
z-android z-android.ru X

Table 6: Marketplaces examined in our market study (S) and monitored by AndRadar (R).

