

European Commission
Directorate-General Home Affairs

Prevention of and Fight against Crime Programme

HOME/2010/ISEC/AG/INT/002

ForToo – Forensic Tools against Illegal Use of the Internet

D2: Implementation Report

Workpackage: WP2: Implementation
Contractual delivery date: 30 Sep 2013
Final draft publication date: 29 Jan 2014
Actual delivery date: 10 Jun 2014
Leading partner: FORTH
Contributing partners: All Partners
Editor: Sotiris Ioannidis
Contributors: All partners
Internal Reviewers: Theo Tryfonas
Version: 1.0

Executive Summary:
In this deliverable we present the implementation details for the ForToo toolkit. The toolkit
consists of a set of forensic tools that can assist forensic investigations in social networks or
mobile devices.

With the support of the Prevention of and Fight against Crime Programme.

European Commission - Directorate-General Home Affairs

This project has been funded with the support of the Prevention of and Fight against Crime Programme of the
European Commission - Directorate-General Home Affairs. This publication reflects the views only of the author,
and the Commission cannot be held responsible for any use which may be made of the information contained
therein.

ForToo: Forensic Tools Against Illegal Use of the Internet HOME/2010/ISEC/AG/INT/002
www.fortoo-project.eu

D2: Implementation Report - 3 -

Table&of&Contents&

TABLE OF CONTENTS ...3!

1! INTRODUCTION...4!

2! DEVISE ARCHITECTURE ..5!

3! MOBILE FORENSICS COMPONENT ...18!

4! SOCIAL NETWORK FORENSICS COMPONENT..26!

4.1! INTRODUCTION..26!
4.2! IMPLEMENTATION ...28!
4.3! DATA COLLECTION ...32!

5! STEGANOGRAPHY DETECTION COMPONENT..34!

6! VISUALIZATION COMPONENTS...55!

6.1! VISUALIZATION OF SOCIAL NETWORK INTERACTIONS..55!
6.2! TIMELINE ANALYSIS TOOLKIT ..59!

7! VISUALISATION INTEGRATION ...65!

7.1! INTER-TOOL INFORMATION EXCHANGE..65!

8! TOOL AND PLATFORM INTEGRATION..66!

9! BIBLIOGRAPHY ...67!

REVISIONS AND QUALITY CONTROL

Version Date Lead contributor Action summary
0.1 10 Sep 2013 Zacharias Tzermias Input on Social

Forensics toolset
0.2 12 Dec 2013 Panagiotis Andriotis Steganography

component and mobile
forensics parts

0.3 27 Jan 2014 Konstantinos Xynos DEViSE architecture
description

0.4 29 Jan 2014 Theo Tryfonas Review and setting at
final draft status

1.0 10 Jun 2014 Theo Tryfonas Formal submission to
PO

ForToo: Forensic Tools Against Illegal Use of the Internet HOME/2010/ISEC/AG/INT/002
www.fortoo-project.eu

D2: Implementation Report - 4 -

1 Introduction&

In this document we present the implementation details of each component of the
ForToo toolkit. The toolkit consists of a set of forensic tools to help the forensic
investigator, when dealing with evidence gathering from social networks and mobile
devices. Each component is integrated into a single platform using the DEViSE
architecture and visualization tools.
The document firstly presents the DEViSE architecture on chapter 3. Chapter 4
provides implementation details on how to acquire digital forensic evidence from
mobile devices, while chapter 5 presents a tool capable of gathering evidence from a
variety of social networks. Chapter 6 describes the methodology to detect
steganography in JPEG images. Visualization components of the toolkit are presented
in chapter 7.

ForToo: Forensic Tools Against Illegal Use of the Internet HOME/2010/ISEC/AG/INT/002
www.fortoo-project.eu

D2: Implementation Report - 5 -

2 DEViSE&architecture&

An overview of the visualisation architecture was provided in Work Package 1. This
provided a highlight of how the architecture’s components may fit together in order
to develop a visualisation platform. This approach described how smaller, more
focused visualisations could be used in the spirit of the UNIX philosophy of building
small and letting tools talk to tools.

This section of work details the more practical implementation aspects of DEViSE, in
particular the structure of the filesystem and a detailed view of the various XML
components of the architecture that facilitate the data exchange. The data exchange is
split into three parts, the data exchange between different visualisation tools, and the
data exchange between a visualisation tool and the underlying data source, and
visualisation integration.

2.1 The DEViSE filesystem

A number of default paths have been created to store the different types of
configuration documents needed to run DEViSE visualisation tools. These are
standard for all DEViSE applications. The pathnames reflect the Linux naming
conventions as most of the development was carried out on this operating system. All
these paths are relevant only to the visualisation server; i.e. the computer running the
DEViSE visualisation tools.
The system uses the following conventions:

Applications - All applications are stored within /home/viz/TOOL- NAME/. Tools
can be configured to operate from an alternate location.

I-DOC - All information documents are stored in /home/viz/xml/idoc/. However, the
HistoryManager application also stores an embedded version of the I-DOC within its
hierarchical structure.

C-DOC - All tool configuration documents are by default stored in
/home/viz/xml/toolconf/.

Type Definitions - The FDE data type mappings are stored in /home-
/viz/xml/typedef/.

ForToo: Forensic Tools Against Illegal Use of the Internet HOME/2010/ISEC/AG/INT/002
www.fortoo-project.eu

D2: Implementation Report - 6 -

Name Mapping - A mapping between FDE basic data type names and their “human–
readable” equivalent are stored in /home/viz/xml/namemap/.

2.2 Data exchange between different visualisation tools

The Figure below represents the implementation architecture of the visualisation
system. A number of components were introduced in Work Package 1 and have been
implemented as follows.

FDE Implementation in Architecture

2.2.1 Configuration Document (C-DOC)

The following listing is an example of a C-DOC file, in use by the Scattergraph tool. It
is currently stored, along with C-DOC’s from other tools, in the default hard disk
location \home\viz\xml\toolconf. All of the XML elements are required to create a
complete C-DOC.

<TI vers=”0.1”>
 <name>Scattergraph</name>
 <description>
 Plots x against y. Good for spotting patterns.
 </description>
 <version>0.0.7</version>
 <location>
 /home/viz/Scattergraph/Scattergraph 0.0.7.py
 </location>
 <input param=”∗”>srcdstip</input>

</TI>

The above listing can be broken into the following components:

ForToo: Forensic Tools Against Illegal Use of the Internet HOME/2010/ISEC/AG/INT/002
www.fortoo-project.eu

D2: Implementation Report - 7 -

<TI vers=”0.1”>
This is the current version of the configuration file. When the C-DOC is referenced,
the version number must be present to identify the exact configuration being used.
Each tool may have several C-DOC’s associated with it due to supporting different
input types, but each of these different inputs may have several “versions”. There may
come a time where a C-DOC containing a particular function type needs to be
updated, this tag assists its management. New and existing versions of C-DOCs can
be run alongside one another simultaneously, so the effectiveness of revised changes
may be compared easily. As new versions of software are notorious for preventing
legacy programs from functioning correctly, this simultaneous running allows tools &
their configurations, old and new, to continue functioning. From an implementation
standpoint, there will be several instances of a tool appearing in an object’s menu.

<name>Scattergraph</name>
The <name> tag simply provides the name of the application. It is used in an object’s
menu to identify the tool and also appears within an I-DOC (see later) to make note
whether the tool is being invoked or if it is invoking another. The name should be
short, given that it will be inserted in a menu. For more detail about a tool,
information should be inserted in the <description> tag.

<description> Plots x against y. Good for spotting patterns. </description>
Provides a short summary on general functionality and expected visual output. This
tag has been included in the C-DOC specification so that applications may implement
“roll-over” effects on tool names to provide greater insight into an unfamiliar tools’
functionality.

<version>0.0.7</version>
The <version> tag identifies for which version of the application this C-DOC is
configured. If an application accepts several function types as input, there will be a C-
DOC for each function type with the same version number. The version number
appears alongside the tool name in an object’s menu, to help distinguish between
different instances of the same tool.

<location>

/home/viz/Scattergraph/Scattergraph 0.0.7.py

</location>
This is the full path to the application. The default location is /home/viz/tool_name.
However the <location> tag allows for storage elsewhere (such as in C:\Program
Files\tool_name on Microsoft based operating systems) when non-standard locations
are used. As tools are normally run with command-line arguments it is imperative
that absolute, not relative, paths are used.

ForToo: Forensic Tools Against Illegal Use of the Internet HOME/2010/ISEC/AG/INT/002
www.fortoo-project.eu

D2: Implementation Report - 8 -

<input param=”*”>srcdstip</input>
The input tag is of particular importance to an object when finding compatible tools,
as it contains two items of data, the param attribute and the value (In this instance,
srcdstip).

param="*"

This attribute represents the quantity of data the application can visualise. It can
either be a fixed amount or an infinite number. In the case of a fixed amount, the
desired whole number is applied (e.g. param="6"). Some tools can effectively
visualise thousands of events, whereas others can visualise a fixed amount. If an non-
fixed quantity is desired, the value is denoted by an asterisk, “*”. When an object
menu is generated, the application looks at these two items of data. It checks if the
data-type matches and whether an acceptable quantity of events can be provided to
the tool referred to by the C-DOC. It is used in conjunction with the <param> tag’s
row attribute from the I-DOC (see later).

srcdstip

The value between the two tags is the “data type” the tool can accept as input from
another application, in this case, srcdstip, a combination of source and destination ip
addresses.

2.2.2 Information Document (I-DOC)

The I-DOC is passed via tools at the command line, using the arguement -i or --
input as shown below.

/home/viz/tool/tool 0.0.7.py −i /home/viz/xml/idoc/idoc1191405434.34.xml

The following XML listing is an example of an I-DOC.

<IDOC>
 <from version=”0.2.5”>Geomap</from>
 <to version=”0.0.7”>Scattergraph</to>
 <param row=”1”>
 <object name=”source destination ip address”>
 <data type=”source computer ip”>
 907212
 </data>
 </object>
 </param>
</IDOC>

The application mentioned in the <from> tag is the parent application, i.e. the tool
responsible for creating the I-DOC; in the above listing it is the Geomap Tool, version
0.2.5. An I-DOC’s function is to pass event id’s and function names to other tools.
Here, the event_id is 907212, the function name is source_computer_ip and the

ForToo: Forensic Tools Against Illegal Use of the Internet HOME/2010/ISEC/AG/INT/002
www.fortoo-project.eu

D2: Implementation Report - 9 -

receiving tool is contained within the <to> tag, “Scattergraph”. When Scattergraph
initialises, it will run the function named “source computer ip” against event id and will
receive the IP address of the attacker from the database.

A complete breakdown of the XML is as follows:

<IDOC>
Stands for “information document”. This identifies this file as belonging to the group
that contains data being passed from one tool to another.

<from version=”0.2.5”>Geomap</from>
The name and version of the tool created the I-DOC. In this example, “Geomap”,
version “0.2.5” created the I-DOC.

<to version=”0.0.7”>Scattergraph</to>
The name and version of the tool receiving the I-DOC. In this example,
“Scattergraph”, version “0.07” will receive the I-DOC.

<param row=”1”>
The <param> tag contains a single attribute, “row”. Row is an integer equal to the
number of event id’s within the I-DOC. It is closely related to the param="*" attribute
in the <input> tag in a C-DOC. If the C-DOC contains a fixed value, then the I-DOC’s
row value should be the same. This is used as a quick redundancy check to make
sure that tools which accept fixed amounts of input can accept the I-DOC given to
them.

<object name=”source destination ip address”>
The <object> tag contains the type of information that will ultimately be obtained from
the database. It is a way of making sure tools which need several different data types
to create a visualisation do not get confused when presented with a group of unique
identifiers.

<data type=”srcdstip”>907212</data>
This <data> tag is the actual element that contains the data applications will use. The
number of <data> elements will equal the number of events that are passed between
tools. There are two important items within this tag, the event id and function name.

907212
This text represents the event id of a single event in the data store. This is the only
actual data which passes from one tool to another, and is used to purely identify the
event from where the data is to be obtained.

type="srcdstip"
The type attribute is the name of a function. The tool which receives the I-DOC will
execute this function (in this example, srcdstip) using the event id as input and
receive an XML document containing the actual data required.

ForToo: Forensic Tools Against Illegal Use of the Internet HOME/2010/ISEC/AG/INT/002
www.fortoo-project.eu

D2: Implementation Report - 10 -

The above listing is a very basic I-DOC, passing only one <data> element from the
Geomap tool to the Scattergraph tool. I-DOC’s can contain several <data> elements,
each function group stored within a different <object> element. A further I-DOC
example containing several elements can be seen below.

<IDOC>
 <from version=”0.2.5”>Geomap</from>
 <to version=”1.6”>Piechart</to>
 <param row=”4”>
 <object name=”source destination ip address”>
 <data type=”srcdstip”>907212</data>
 <data type=”srcdstip”>907213</data>
 <data type=”srcdstip”>18</data>
 <data type=”srcdstip”>4654</data>
 </object>
 <object name=”Attack Type”>
 <data type=”attack type definition”>907212</data>
 <data type=”attack type definition”>907213</data>
 <data type=”attack type definition”>18</data>
 <data type=”attack type definition”>4654</data>
 </object>
 <object name=”Date and Time”>
 <data type=”timestmp”>907212</data>
 <data type=”timestmp”>907213</data>
 <data type=”timestmp”>18</data>
 <data type=”timestmp”>4654</data>
 </object>
 </param>
</IDOC>

In the above listing a Geomap application passes several events to a Piechart
application. Looking at the I-DOC it is possible to make several deductions about the
tools involved and their interaction.

The data is passing from a Geomap to a Piechart. To create this I- DOC, an object
within the Geomap tool would have been clicked.
The object within Geomap is able to provide at least the three different function
types, mainly srcdstip, attack_type_definition and timestmp.
The Piechart tool is able to visualise at least these three data types; they would not be
present in the I-DOC if the Piechart was not intended to visualise such data.
The object in Geomap, at the time of interaction, held four unique events (907212,
907213, 18 and 4654).
The Piechart will execute twelve functions. There are four unique event id’s and three
unique function types in this I-DOC.
The Piechart can visualise four events. There are four event id’s listed for each data
type and the <param> tag has the value row="4".

ForToo: Forensic Tools Against Illegal Use of the Internet HOME/2010/ISEC/AG/INT/002
www.fortoo-project.eu

D2: Implementation Report - 11 -

With an I-DOC it is possible to find out what data has been passed, where data came
from and where it is going to. As I-DOC’s are created as XML files, all this
information remains after the applications have been closed allowing visuals to be re-
opened at a later date.

2.3 Data exchange between visualisation tools and the underlying data
source

In work package 1, the data exchange between the underlying data store and
visualisations was highlighted. A number of appendices showed some sample queries
for data being generated. The components are fully described below.

2.3.1 SOAP XML RPC Request (S-DOC)

The S-DOC is an XML document that is used to query a SOAP server sitting on the
database to retrieve results. The FDE generates S-DOC’s for basic type definitions; if
an application requires data from a known single event, it can call a type definition
the FDE can reference to make the S-DOC. If the tool requires a complex query
carried out, such as selecting all attacks between two timestamps, the tool needs to
create a S-DOC and query the database SOAP server directly. The S-DOC contains a
database query encoded in XML which the SOAP server translates and executes on
the database. The following listing is an example of a typical S-DOC request to the
database SOAP server.

<SOAP−ENV:Envelope
xmlns:SOAP−ENV=”http://schemas.xmlsoap.org/soap/envelope/”SOAP−ENV:encoding
Style=“http://schemas.xmlsoap.org/soap/encoding/”/>

 <SOAP−ENV:Body>
 <RELATIONS command=”SELECT”>
 <REL name=”event”>
 <ATT name=”event id”>3</ATT>
 </REL>
 </RELATIONS>
 </SOAP−ENV:Body>
</SOAP−ENV:Envelope>

The listing below is an example of a typical S-DOC response from the database SOAP
server. Again, the database mapping can be seen in the code via the <REL> tags. The
important changes include the command attribute in the <RELATIONS> tag is now
SELECT_RESULTS indicating this XML document contains data retrieved from the
database. The first <REL> tag contains two new attributes, “name” and “value”.
These simply define the unique identifier of this result, in the case of more complex
queries that return several items of data each result can be uniquely identified. The
<ATT> element is completed with the requested data from the correct relation in the
database, in this case a timestamp. Towards the end of the document, there are more
<REL> tags with summary information in. “TOTAL RECORDS” and “TOTAL

ForToo: Forensic Tools Against Illegal Use of the Internet HOME/2010/ISEC/AG/INT/002
www.fortoo-project.eu

D2: Implementation Report - 12 -

RESULTS” define how many records were returned in this particular result (1 in this
example), and how many different results were returned (1 in this example).

?xml version=”1.0” encoding=”UTF−8”?>
 <RELATIONS command=”SELECT RESULTS”>
 <REL name=”RESULTS ID” value=”1”>
 <REL name=”event”>
 <ATT name=”timestmp”>2007−10−09 11:10:03</ATT>
 </REL>
 <REL name=”TOTAL RECORDS”>1</REL>
 </REL>
 <REL name=”TOTAL RESULTS”>1</REL>
</RELATIONS>

The various XML elements that create an S-DOC are as follows:

<RELATIONS command=”SELECT”> This element identifies the query as a SQL
SELECT statement to the SOAP server.

<REL name=”event”> This element identifies the table name from which data should
be obtained. In this case, the “event” table. Also in the same listing, the code <REL
name="source"> can be seen. This is deliberately contained inside the “event”
relation as an automatic join occurs between event and source tables. Source’s
primary key is a foreign key in the event table.

<ATT name=”event id”>3</ATT> This element provides the comparable WHERE
clause in Listing 4.34 for event_id=3. It specifies a column in a table the query should
carried out upon.

2.3.2 Function Document (F-DOC)

The Function Document, or F-DOC, is a XML request from a visualisation tool to the
DEViSE middleware for data. The F-DOC provides the means for an application to
request the execution of a query (i.e. type definition / function) on its behalf on the
database and to receive the result of the executed query in a database independent
manner.

As the F-DOC uses a SOAP interface to the FDE, the interactions between application
and FDE can be divided into the request and the response.

An example of an F-DOC request can be seen below.

<SOAP−ENV:Envelope xmlns:SOAP-
ENV=http://schemas.xmlsoap.org/soap/envelope/SOAP−ENV:encodingStyle=”http:/
/schemas.xmlsoap.org/soap/encoding/”/>
 <SOAP−ENV:Body>

ForToo: Forensic Tools Against Illegal Use of the Internet HOME/2010/ISEC/AG/INT/002
www.fortoo-project.eu

D2: Implementation Report - 13 -

 <function>
 <name>source_computer_ip</name>
 <version>1.7</version>
 <eventid>147</eventid>
 </function>
 </SOAP−ENV:Body>
</SOAP−ENV:Envelope>
The main elements in the F-DOC request are as follows:

<name> This element references the type definition / function the application wishes
executed.

<version> This is the numbering system used when identifying type definitions. As
type definitions are expected to change over time, referencing just the name of the
function is not enough. Specifying the version of the function helps prevent problems
with legacy type definitions after upgrades have been installed.

<eventid> This references a particular event in the underlying database by its
primary key or event id.

An example of an F-DOC response can be seen below.

<SOAP−ENV:Envelope xmlns:SOAP-
ENV=http://schemas.xmlsoap.org/soap/envelope/SOAP−ENV:encodingStyle=”http:/
/schemas.xmlsoap.org/soap/encoding/”/>
 <SOAP−ENV:Body>
 <result>
 <relation version=”1.7” name=”source_computer_ip” eventid=”147”>
 <row>
 <data name=”IP”>192.168.204.12</data>
 </row>
 </relation>
 </result>
 </SOAP−ENV:Body>
</SOAP−ENV:Envelope>

The reply from the SOAP server contains the actual data from the data store,
packaged in a database independent manner, without the need to reflect on any of the
structures that comprise the underlying cloud.

The main elements in the F-DOC response are as follows.

<result> This is the root element from which the return information is packaged
within.

ForToo: Forensic Tools Against Illegal Use of the Internet HOME/2010/ISEC/AG/INT/002
www.fortoo-project.eu

D2: Implementation Report - 14 -

<relation> This element contains three attributes, a summary of the values received
from the F-DOC request file.

<row> This element is the root for all the returned data elements.

<data> The <data> element contains an attribute and a value. The attribute, “name”,
represents the generic data type of the value, in this case “IP”. The value is the actual
data the application will visualise, an IP address “192.168.204.12”.

2.4 sqlite Extension to DEViSE

The DEViSE architecture makes use of XML to represent data. XML has the ability to
store information in a tree-like structure. This structure lends its self very well when
representing relationships between tables. Although the current architecture makes
use of Apache’s Cassandra data store, as depicted in WP1, the original system was
built upon a relational database.

Modifications were made to include support for sqlite databases which could then be
implemented and queried as required. This lets forensic analysts feed in data
structures from mobile devices and then query them with the use of the XML
notation as specified by DEViSE.

The system is also capable of querying the database in a number of ways and this
allows it to represent data in a different manner.

Below, figure A, is a query that is made against the system, that interacts with the
sqlite database extracted from an android phone.

<RELATIONS command="SELECT">

 <REL name="sms">

 <ATT name="_id"/>

 <REL name="threads">

 </REL>

 </REL>

</RELATIONS>

Figure A. - Join query for tables sms and threads

The result of the join query, from figure A, is then presented in figure B where the
joining result is presented. This can be verified by the fact that the thread_id from
table sms matches with that of _id from table threads.

ForToo: Forensic Tools Against Illegal Use of the Internet HOME/2010/ISEC/AG/INT/002
www.fortoo-project.eu

D2: Implementation Report - 15 -

... [cut down for brevity] ...

<REL name="RESULTS_ID" value="6">

 <REL name="sms">

 <ATT name="_id">6</ATT>

 <ATT name="body">Thanks for signing up to My T-Mobile. Your One
Time Pin is: 0000. Just enter this next time you log in and you'll be up
and running.</ATT>

 <ATT name="thread_id">4</ATT>

 <ATT name="address">T-Mobile</ATT>

 <ATT name="date">1390748250000</ATT>

 <REL name="threads">

 <ATT name="_id">4</ATT>

 <ATT name="date">1390748250000</ATT>

 </REL>

 </REL>

 <REL name="TOTAL_RECORDS">2</REL>

</REL>

... [cut down for brevity] ...

Figure B - Join result of sms data example

Likewise it is possible to query the tables in reverse order whereby the threads table
on _id will be matched with that from sms. The query example is shown in Figure C.

<RELATIONS command="SELECT">

 <REL name="threads">

 <ATT name="_id"/>

 <REL name="sms">

 </REL>

 </REL>

</RELATIONS>

Figure C - Join conducted using threads and then sms

Figure D demonstrates the new join’s result. This allows the analyst to easily extract
data in the same format as that used by DEViSE in the Apache Cassandra data store.

... [cut down for brevity] ...

<REL name="RESULTS_ID" value="6">

 <REL name="threads">

ForToo: Forensic Tools Against Illegal Use of the Internet HOME/2010/ISEC/AG/INT/002
www.fortoo-project.eu

D2: Implementation Report - 16 -

 <ATT name="_id">4</ATT>

 <ATT name="date">1390748250000</ATT>

 <REL name="sms">

 <ATT name="_id">6</ATT>

 <ATT name="body">Thanks for signing up to My T-Mobile. Your One
Time Pin is: 0000. Just enter this next time you log in and you'll be up
and running.</ATT>

 <ATT name="thread_id">4</ATT>

 <ATT name="address">T-Mobile</ATT>

 <ATT name="date">1390748250000</ATT>

 </REL>

 </REL>

 <REL name="TOTAL_RECORDS">2</REL>

</REL>

... [cut down for brevity] ...

Figure D - Result of the join on threads and sms

Since the tables can be easily exported they can then be processed and stored in the
Cassandra data store for future querying by the visualisation tools. The Cassandra
data store also becomes the centralised storage system for all the forensic artefacts
collected over a larger time period. This can then be used for future investigations
which could span large data sets or even searches across multiple cases, if needed.

2.5 NFAT Extension to DEViSE

The DEViSE system was also extended to include network captures. This was done by
capturing network traffic, converting it into PDML, and then converting PDML into
the DEViSE format. The final format then allows the analyst to insert the converted
network capture into the Apache Cassandra data store. Once in the data store it is
possible to query multiple frame packets.

Figure E – Network Traffic storage

ForToo: Forensic Tools Against Illegal Use of the Internet HOME/2010/ISEC/AG/INT/002
www.fortoo-project.eu

D2: Implementation Report - 17 -

Figure E demonstrates the different phase that the captured network traffic go
through before being inserted into the data store.

Since each individual frame is inserted into the data store in a structured way it is
possible to query on a number of fields and extract parts or all of the data from the
data capture. Original captures are kept in order for the findings to be cross-
referenced.

ForToo: Forensic Tools Against Illegal Use of the Internet HOME/2010/ISEC/AG/INT/002
www.fortoo-project.eu

D2: Implementation Report - 18 -

3 Mobile&Forensics&Component&

The databases we are providing for visualization are mentioned at the following list:

• /data/com.android.email/databases/EmailProvider.db:
Tables of interest: Account, HostAuth, Message. Here we can find information
about the usernames (and maybe passwords) the person under investigation
uses to connect to email providers. Also, the emails stored in the device can be
found there.

• /data/com.android.providers.contacts/databases/contacts2.db:
Tables of interest: accounts, contacts, data, raw_contacts, speed_dial,
status_updates. In this database we will find names and telephone numbers
stored in the device or the SIM or Google through the Google account of the
user.

• /data/com.android.providers.telephony/databases/mmssms.db:
Tables of interest: pdu, sms, threads. This is the database where all the
information considering the sms activity can be found.

• /data/com.facebook.katana/databases/fb.db:
Tables of interest: connections, friends_data, search_results. Since most of
the facebook activity is not recorded on the device these tables could provide
information about friend’s data and search results. Also they will reveal the
timestamp of the last syncing.

• /data/com.google.android.gsf/databases/talk.db:
Tables of interest: accounts, contacts, messages. Talk used to be the default
chat application the Android devices used to offer by the time of this report
writing. Text messages and account info are the possible outcomes from this
database.

• /data/com.twitter.android/databases/twitter_User_id.db:
Tables of interest: lists, messages, statuses, user_metadata, users. This is the
Twitter database. Data coming from here can be integrated with the social
network tool.

• /data/com.skype.raider/files/Skype_username.db:
Tables of interest: CallMembers, Calls, Chats, Contacts, Conversations,
Messages, Voicemails. Like Twitter this is a database that holds information
about the Skype activity of the user. It can be used in conjunction to the social
network component.

ForToo: Forensic Tools Against Illegal Use of the Internet HOME/2010/ISEC/AG/INT/002
www.fortoo-project.eu

D2: Implementation Report - 19 -

3.x Mood Analysis from SMS and Instant Messengers

3.x.1 Introduction

Recently we witnessed a remarkable technological bloom on mobile communications
and things have changed considering the mobile networks, the devices and the users
themselves. Our needs for processing power and usability have grown exponentially
along with the capabilities of flagship devices that will be equipped with 64bit
processors in 2014. Mobile phones upgraded from simple telephone devices to
sophisticated mini computers. The forms of communication between users also have
changed but short text messages (SMS) are still one of the most popular services
mobile phones provide. In addition, modern smartphones can also send emails or
provide the functionality to the user to chat with friends using instant messengers.
We can keep notes, update our status in social media or comment other peoples’
statuses. Therefore, we store in these devices valuable textual information depicting
our feelings for other people.

A forensic analysis usually includes the examination of all electronic devices the
suspect uses. The analysts try to extract as much information as they can for the
person into question revealing various artifacts. In digital forensics we are interested
in recovering deleted files and presenting the extracted data in an efficient way. Text
messages are an integral part of our communications and therefore could potentially
provide valuable evidence during a forensic investigation. The tool we developed is
able to analyze text messages and calculate a score, which describes the mood
precipitation the message leaves to the user. Thus, it is acting as a behavioural
pattern-retrieving component.

3.x.2 Design Aspects

We already mentioned in D1 - 3.3.1 (Andriotis et al., 2012) that we can perform
forensic analysis to smartphones and tablets running the Android Operating System,
utilizing open source tools (http://developer.android.com) and basic Linux
commands like ‘dd’ to gain a physical image of the internal memory and its various
partitions. In the data partition we will primarily be able to see the data that all
applications store internally in SQLite databases once we mount the image to an
Unix-like system. Such data are collected every time we use the devices and they are
responsible to provide their functionality. The appropriate folder where the SMS data
are stored in the data partition is the:

/data/com.android.providers.telephony/databases/mmssms.db.

When the forensic examiner mounts the partition on a computer, a database browser,
looking at the SMS table of the database, can view the sent and received SMS. Our
tool uses text-mining methods to present the sentiment state of entities exchanging

ForToo: Forensic Tools Against Illegal Use of the Internet HOME/2010/ISEC/AG/INT/002
www.fortoo-project.eu

D2: Implementation Report - 20 -

messages through the phone. We use a simple bag-of-words approach in order to
achieve the mood classification of an SMS. Our research revealed that methods used
to extract information from Twitter feeds could be also used to perform SMS mood
analysis (to be presented at IFIP W.G. 11.9 on Digital Forensics, Vienna, January
2014).

The tool we developed uses the Apache Lucene Library (http://lucene.apache.org) to
perform sentiment analysis on SMS and, in addition, brings the opportunity to the
analyst to search fast and efficient for keywords in the database using indexing.
Indexing is the method that web search titans employ to perform fast and accurate
searches and deliver reliable results. In other words, our tool works like Google or
Bing for the database under examination in order to deliver faster results than an
SQL query.

The design concept behind the implementation of the tool is simple. First we transfer
all the requested content from the SQLite database (which is the database under
investigation that was found in a device) to a MySQL database running in our
computer. Apache Lucene will produce a set of keywords of the individual SMS
(without using any stemming) and also will provide the stemmed words for the SMS
sentiment analysis. When all data have been processed we utilize again the Apache
Lucene Library to create an index of the MySQL database into the developing
machine, which will be responsible to answer any text query the analyst might have.
The same concepts could be applied for all kinds of text data like emails or chat
messages.

The advantages of this searching technique are mainly that the analyst will be able to
indirectly query the SQLite database without having any particular knowledge of the
SQL language, through the index, like doing a Google web search. One more
advantage of this method is that the search is faster than querying the database itself.

For the needs of this report we simulated the messages in the mmssms.db SQLite
database with some tweets from our public tweet database. We collected tweets from
popular users using the Twitter API (we write a simple PHP script for this cause).
After running the tool the forensic analyst will obtain a MySQL database containing
the original data from the mmssms.db SQLite database and also the keywords
extracted from each message. Each tuple contains the calculated sentiment score. A
view of the database is provided below.

ForToo: Forensic Tools Against Illegal Use of the Internet HOME/2010/ISEC/AG/INT/002
www.fortoo-project.eu

D2: Implementation Report - 21 -

Figure 1: A view of the MySQL database where the data are stored along with the
keywords and the calculated sentiment score.

The algorithm we used takes into consideration the existence of emoticons and also
evaluates the sentiment strength of a given word. The goal of the proposed
framework is to provide to a timeline analysis interface that depicts the emotional
inference of each SMS that was found in the smartphone.

The Emotional Chronology could provide indications of the user’s emotional state
during a specific time interval. The information we could extract by such a viewing
might be helpful because we can focus quickly on specific periods of time that could
be of interest. For instance, when analysts deal with a case where the person under
investigation is always in good mood, and there exists a period of time the suspect
seems to have negative emotions, it will be more efficient to start the examination by
analyzing the specific timeframe.

The next figure demonstrates the timeline view of the SMS set that was found in the
mmssms.db SQLite database, including sent and received messages from all phone
contacts. We observe for example, that most of the time the smartphone owner
exchanges messages with positive emotional fingerprint. There are although periods
of time (e.g. from 12th August until 17th August) when the sentiment score is negative
and maybe this is a period that a forensic analyst would like to search more carefully.
The proposed timeline view gives the opportunity to the forensic investigator to
maintain a generic view of the user’s behaviour.

Figure 2: Timeline Emotional Analysis based on SMS found in the device.

ForToo: Forensic Tools Against Illegal Use of the Internet HOME/2010/ISEC/AG/INT/002
www.fortoo-project.eu

D2: Implementation Report - 22 -

The timeline view can be more consistent presenting only the communication
between two parts, or indicating only received or sent messages. The next figure
depicts the communication between the person under investigation and a single
entity (+xxxxxxxxxx38), based on the telephone number stored in the database (left).
On the right hand side the timeline view depicts the emotion of messages sent by the
person under investigation to all its contacts.

(a) (b)

Figure 3: Timeline views highlighting communication between two entities (a) and
messages sent by the person under investigation (b).

3.x.3 Searching for keywords

The index of the MySQL database created by the tool is helpful because we provide to
the forensic analyst (who is not familiar with the SQL language) the capability to
search the database in a way similar to a simple web search. The method of database
indexing is more efficient because it provides answers faster than an SQL query. In
large datasets (maybe with more interconnected databases) this feature could be
critical in order to perform faster and produce more accurate searches. The next
figure demonstrates how our tool depicts results obtained after searching the index
for the word ‘happy’.

Figure 4: Searching the index.

There were 4 hits containing the word ‘happy’ and the tool also returns details like
the message id in the original SQLite database, the date the message was sent or
received and the contact that communicated the specific message. This format is

ForToo: Forensic Tools Against Illegal Use of the Internet HOME/2010/ISEC/AG/INT/002
www.fortoo-project.eu

D2: Implementation Report - 23 -

readable and contains (in a concise sentence) the basic information we could deduce
examining the cells of the original database.

Note: This work will be presented at the Tenth Annual IFIP Working Group 11.9
International Conference on Digital Forensics on January 2014 (Vienna). It will be
published by Springer Publications at ‘Advances in Digital Forensics X’.

3.x.4 Implementation Decisions

We chose the Java Programming Language for the development of the specific tool.
As we said in the previous topic, the Apache Lucene Core is written in Java so we
decided to implement the tool using the safe environment the language provides.
There are also well-tested drivers to provide links among our program, the MySQL
and the SQLite databases.

We import the following files to our code:

import java.io.File;
import java.io.FileReader;
import java.io.LineNumberReader;
import java.io.StringReader; // for file and string manipulation
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement; // to handle SQL statements
import java.util.ArrayList;
import java.util.Date; // to transform timestamps into human
readable state
import java.util.HashMap;
import java.util.HashSet;
import org.apache.lucene.analysis.Analyzer; // to handle words with Lucene
import org.apache.lucene.analysis.TokenStream;
import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.analysis.tokenattributes.CharTermAttribute;
import org.apache.lucene.util.Version;
import org.tartarus.snowball.ext.PorterStemmer; // to apply Porter Stem

The tool performs the following distinct steps:

• First, we need a MySQL database running on the localhost. We provide the
database credentials (username, password).

• Register the JDBC Driver and open a connection with the database.
• Create the TABLE that will hold our data (id, date, address, type, body,

keywords, sentiment).

ForToo: Forensic Tools Against Illegal Use of the Internet HOME/2010/ISEC/AG/INT/002
www.fortoo-project.eu

D2: Implementation Report - 24 -

• Connect with Lucene (Version.LUCENE_44) and create internal data
structures.

• Open the Analyzer and initialization files (lexica, emoticons list, positive and
negative).

• Open a connection with the SQLite database found in the internal memory of
the phone – device.

• Extract emoticons and stem the keywords from each message (found in the
SQLite database).

• Assign emotional valence of each word and calculate the final sentiment score
of each message.

• INSERT INTO the created TABLE (MySQL database) the content of all SQLite
tuples and add the extracted keywords and the mood score.

• Close Analyzer and database Connections.

The module we presented will create our content that we can query using the index
Lucene will create in the examiner’s machine. In order create the index we need the
following files.

import java.io.IOException;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.ResultSet;
import java.sql.Statement; // to handle the SQL connection
import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.document.Document;
import org.apache.lucene.document.Field;
import org.apache.lucene.document.StringField;
import org.apache.lucene.document.TextField;
import org.apache.lucene.index.DirectoryReader;
import org.apache.lucene.index.IndexReader;
import org.apache.lucene.index.IndexWriter;
import org.apache.lucene.index.IndexWriterConfig;
import org.apache.lucene.queryparser.classic.ParseException;
import org.apache.lucene.queryparser.classic.QueryParser;
import org.apache.lucene.search.IndexSearcher;
import org.apache.lucene.search.Query;
import org.apache.lucene.search.ScoreDoc;

ForToo: Forensic Tools Against Illegal Use of the Internet HOME/2010/ISEC/AG/INT/002
www.fortoo-project.eu

D2: Implementation Report - 25 -

import org.apache.lucene.search.TopScoreDocCollector;
import org.apache.lucene.store.Directory;
import org.apache.lucene.store.RAMDirectory;
import org.apache.lucene.util.Version; // Lucene indexing files

The basic steps of the indexing procedure are described below:

• Open an Analyzer and describe the MySQL database.
• Create the index and connect to the MySQL database (using the database

credentials).
• Create a new Document and add StringFields to the index, looking at the fields

of the database.
• Close the IndexWriter.
• Define a query and create a QueryParser to perform the query on the index.
• Search the index and collect the related information.
• Print the results in a concise and informative manner and close the reader.

Finally, we are adding the following jar files to the class path:
(These files can be found in the zip file from
http://www.apache.org/dyn/closer.cgi/lucene/java/4.6.0)

lucene-core-4.4.0.jar
lucene-analyzers-common-4.4.0.jar
sqlite-jdbc-3.7.15-M1.jar
mysql-connector-java-5.1.26-bin.jar
lucene-queries-4.4.0.jar
lucene-queryparser-4.4.0.jar

ForToo: Forensic Tools Against Illegal Use of the Internet HOME/2010/ISEC/AG/INT/002
www.fortoo-project.eu

D2: Implementation Report - 26 -

4 Social&Network&Forensics&Component&

This chapter presents the implementation details of the Social Network Forensics
component. This component consists of a framework capable of downloading data
from social networking sites, correlating accounts from diverse social networks using
various heuristics, and visualizing the data in comprehensive forms (graphs, calendar
of actions), helping forensic analysis with the extraction of valuable evidence.

4.1 Introduction
The term online social networks (OSNs) is commonly used for referring to services
like Facebook, Twitter and Google+, narrowing the true extent of digital social
networks. However, many more services can be construed as OSNs, as they reflect
sets of people performing digital interactions between them. Such interactions are
created through email exchanges, Skype calls, and a wide range of other every-day
activities among individuals of a network. Thus, in the context of this work, the term
social networks will refer to any online service that creates clusters of people with
shared activities or communication, all of which can be sources of valuable
information.
With the ever-increasing popularity and use of online social networks, these services
are leveraged towards conducting nefarious activities and exhibiting offensive
behaviour (e.g., cyber-bullying). Furthermore, even malicious individuals (not only
cyber-criminals, but perpetrators of physical world crimes) have also adopted these
technologies. This explosive growth rate has, basically, created the first digital
generation consisting of people of all ages and backgrounds. People are creating their
digital counterparts for interacting with other users, for both recreational and
professional reasons, and disclose a vast amount of personal data in an attempt to
utilize these new services to the fullest. As a connection in a social network is a
representation of social interaction, it also indirectly shows a level of trust between
different individuals, in terms of the data they are willing to share with each other.
However, the lack of technical literacy among the majority of users has resulted in a
naive approach, where the caution demonstrated in social interactions of the physical
world has disappeared.
This behaviour has raised the concern of the research community in terms of user
privacy and the wide range of threats users expose themselves to, ranging from
identity theft to monetary loss. While the amount of personal information disclosed
by users [32] or leaked by services [38, 39] is troubling, in certain cases it can prove
to have a positive “side-effect”. Law enforcement agencies have been able to solve
criminal cases after extracting the digital footprints of users, as they contained clues
that ultimately led to the discovery of the perpetrators.
Social forensics tools aim to facilitate the discovery of this digital “trail of
breadcrumbs”, and extract data that can guide criminal investigations towards
uncovering valuable information. Such tools differentiate from “traditional” digital
forensics tools, aiming to recover potential deleted files or carve artefacts from the
volatile memory of a device. The very few existing tools that target social networks
tend to be proprietary solutions which not all law enforcement agencies around the

ForToo: Forensic Tools Against Illegal Use of the Internet HOME/2010/ISEC/AG/INT/002
www.fortoo-project.eu

D2: Implementation Report - 27 -

world can get access to. Our goal is to provide an extensive open source framework
that will assist forensics analysts in this daunting task of collecting evidence.
We have designed and implemented our toolset with the following usage model in
mind: the authorities seize the digital devices (be it desktop, laptop or just hard disk
drives) of a suspect and wish to acquire and analyze any available information
regarding suspect’s online activities. The analysis of social network activities presents
three major challenges:

1. Acquiring as much data as possible from the suspect’s online accounts and
relevant local artefacts.

2. Correlating contacts across diverse services
3. Visualizing this extensive collection of data.

 Our modular framework contains components for handling all three tasks.
The core functionality of any forensics analysis tool is the extraction of user data. A
series of crawling modules has been created, each designed for extracting data from a
specific service. When available, public API of each service is leverged to collect
available data. In the remaining cases, custom crawlers have been implemented for
acquiring the data. The correlation of users across services is a very crucial, yet
challenging, aspect of our framework. Correlation component follows a series of
techniques for mapping user accounts from different services. Using a method we
demonstrated in previous work [44], email addresses extracted from the suspect’s
accounts can be mapped to Facebook profiles, which are the core sources of
information. A similar process conducted in Foursquare, utilizing the search
functionality of the official API. Furthermore, we employ data from about.me, a social
directory site where users create a profile page with links to their social accounts, to
further improve our correlation results. Finally, we also use fuzzy matching
techniques for matching user names and email handles collected from different
services.
The datasets collected during the data extraction process contain a wide range of
different types of information regarding online activities. Existing forensics-related
visualization tools usually focus on the depiction of graph-related data. However,
various visualization libraries exist, and can handle multiple types of data. As such,
we build upon existing libraries and create a visualization framework, designed
specifically for visualizing data representing user activities in online social networks
and communication services. Furthermore, the massive amount of data necessitates
the creation of dynamic viewpoints of varying granularity, that will assist analysts in
surveying aggregated statistics, as well as focusing on specific users or interactions.

ForToo: Forensic Tools Against Illegal Use of the Internet HOME/2010/ISEC/AG/INT/002
www.fortoo-project.eu

D2: Implementation Report - 28 -

Figure 1: The architecture of the social forensics framework

4.2 Implementation
The core of our framework has been implemented in Python as a collection of
components. We have designed it in a modular way in order to incorporate future
social networks and services in our dataset. In this section, we provide a high-level
overview of our system, describe the role of each component, and present technical
details regarding the implementation of some of the components we have created.
Figure 1 presents the architecture of our framework and the steps that comprise the
whole procedure:

1. The data collection component uses stored session cookies and user
credentials to log into the online services as the suspect.

2. Each crawling component extracts as much data possible from each service
that the user has an account for.

3. All extracted data is saved into a MySQL database.
4. The account correlator component:

a. Pulls the account information of the suspect’s contacts from the
database.

b. Uses several techniques for correlating the accounts, some of which
leverage online services.

5. The data visualization component fetches data from the database
asynchronously and dynamically presents the viewpoints requested.

4.2.1 Usage Scenario
We implemented our framework with the following usage scenario in mind. The
forensics analysis investigator has acquired the suspect’s digital device (or hard disk
and connected it to a computer) and connected it to the Internet, since the data

ForToo: Forensic Tools Against Illegal Use of the Internet HOME/2010/ISEC/AG/INT/002
www.fortoo-project.eu

D2: Implementation Report - 29 -

extraction and correlation components must connect to online services. Components
of our framework can also be leveraged by researchers for collecting, correlating, or
inspecting data from social networking experiments collected from social networking
experiments.
An important design aspect of our system, was to make its execution as simple as
possible. Ideally, the analyst would need only execute a program and everything else
would be done automatically. However, due to the requirement of authorizing the
crawling modules that use public APIs with the social networks through OAuth, a
small amount of manual intervention is needed. Specifically, after the system logs
into a service, the investigator is prompted to authorize the crawling component for
the suspect’s profile.
After the authorization phase, everything else is completed automatically. The
framework installs a MySQL database and creates a series of tables for storing all the
information from the suspect’s accounts. The libraries required by the crawling
component, for example fbconsole [28] and Tweepy [17], are downloaded and
installed automatically. The libraries for the visualization component are included
within the web application.

4.2.2 Data collection components
Depending on the targeted service, the corresponding crawling component attempts
to extract as much information as possible. In the case of online social services we
leverage existing public APIs, if available. Otherwise we create custom crawlers for
extracting the data. In this section we provide technical details for certain modules.
Log-in process. Our tool uses the credentials saved in the browser’s password
manager or existing session cookies, to log into the targeted services as the suspect.
Alternatively, the analyst can manually add the suspect’s credentials in a
configuration file, when no other method of logging in is available for a service. The
password managers of Chrome and Firefox utilize a SQLite database as their
password storage. Some browsers, like Firefox, encrypt this database using a “master
password”. In contrast, Chrome does not employ any encryption mechanisms, thus,
storing the credentials in plaintext. We implemented a custom password extractor
that locates Chrome’s SQLite password file in the filesystem, and extracts credentials
belonging to social networks and relevant services. Browser session cookies are also
stored in SQLite databases. Thus, the same process is followed to extract session
cookies.
Facebook. Once logged in, a custom application is installed in the suspect’s profile,
so the data can be retrieved through Facebook’s Graph API [29]. This application has
access to any resource available in the profile. After installation, our system leverages
the Facebook Query Language (FQL) to extract the data from the user profiles [27].
FQL provides an SQL-like interface for querying user data, and can evaluate multiple
queries in a single API call through FQL multi-query requests. Queries are packed as
a JSON-encoded dictionary and sent as a single request. The response includes a
similar dictionary with the respective results.
Twitter. In order to use the Twitter API, similar steps are followed. An application
that has full access to the profile data has to be installed in the suspect’s profile.
However, Twitter poses an extra overhead during the crawling phase, due to its rate-
limiting policy. To avoid potential rate-limiting issues, we add 10-second delay

ForToo: Forensic Tools Against Illegal Use of the Internet HOME/2010/ISEC/AG/INT/002
www.fortoo-project.eu

D2: Implementation Report - 30 -

between successive requests. Protected accounts (whose information is only available
to selected followers) are collected with the highest priority. Next, we focus on
accounts with small volumes of data, i.e., those with the smallest volume of tweets.
Google+. We utilize the official Google Plus API [9] for extracting the data. Through
this API and the OAuth authorization method, we are able to extract all the public
information from the users’ profiles, and the contacts from public circles. The
information also includes the name of the city where the user resides. We rely on the
Google Geocoding API [11] for converting the city to a pair of geographical
coordinates.
Foursquare. Our crawling component is built upon a Python wrapper [8] for the
official Foursquare API [7]. After the OAuth authorization is completed and an
authorization token is acquired, the crawler extracts the data through API calls that
return the data formatted as JSON objects.

4.2.3 Account correlation component
This component has a very important role. As our goal is to collect data from variety
of online services, we require a method for correlating the suspect’s contacts across
services. Several separate modules comprise the component, each leveraging a
different service or technique. We can see an overview of the correlation process in
Figure 2. The Yahoo module is executed once as its output is not affected by the
outcome of the other modules. The remaining modules are executed in a loop, as each
module might result in information that can be processed by other modules as well.
Thus, the correlation process executes these modules in a round-robin fashion until
none of the modules produce new information within an iteration.

Figure 2: The account correlation process.

Yahoo. The goal of the first module is to extract the email addresses of the suspect’s
Facebook contacts. Even though Facebook apps are not allowed to obtain the email
addresses of the user’s contacts [4], there is a method to bypass that restriction.In
particular, Yahoo mail allows one to export their Facebook contacts and add them to

ForToo: Forensic Tools Against Illegal Use of the Internet HOME/2010/ISEC/AG/INT/002
www.fortoo-project.eu

D2: Implementation Report - 31 -

their email contact book. The output of this process is the Facebook profile names
and the email addresses used to setup the profiles. While not all email addresses are
returned, as users can change the visibility of their email address, by default the email
is returned. In a small case study we conducted, we found that approximately 70% of
the users tend to keep the default setting and their email addresses are imported.
Facebook. In previous work [44] we demonstrated how Facebook can be leveraged
as an oracle for mapping a user's email address to his online account. A more efficient
method for processing large numbers of email addresses was demonstrated in [21].
We follow this technique for mapping all email addresses we have found, that have
correspondence with the suspect, to their Facebook accounts (if they have created one
with that email address).
Again, while a user can change the privacy settings to be removed from such searches,
it is enabled by default and not disabled by the average user.
Foursquare. The official API contains a call that searches for Foursquare accounts
based on different types of information, thus, it can also be used as an oracle for
correlating user accounts. Specifically, the API call takes as a parameter any one of
the following pieces of information and returns the relevant Foursquare account (if it
exists): Facebook ID, Twitter username, email address, name, phone number.
Consequently, apart from locating a user's Foursquare account, we can also associate
disjoint pieces of information we have collected from other services.
About.me. This site offers a platform for users, where they can create a personal
page containing links to their profiles on popular social networking services. Using
the names extracted in previous steps, we search about.me for profiles with the same
name and extract the links to their profiles on social services. We then attempt to
verify that the account belongs to the same user by comparing the account IDs to any
we have correlated previously.
First we leverage the website's search functionality for locating the suspect's contacts
that have an about.me profile. As the search query results are dynamically rendered
through Ajax requests, we scrape the results through PhantomJS [16], a headless
webkit that also offers a Javascript API. After obtaining the user profiles, we extract
the available links towards social network profiles. Each link to a specific <network>
is accessible through a unique URL1. Similarly, other social directory sites could be
used.
Fuzzy matching. Some of the services we extract data from don't provide the email
addresses of the account's contacts, which would allow us to deterministically
correlate user accounts across services. Furthermore, different email addresses may
have been used for different services. To overcome this, we compare information
collected from different services and match them based on similarity. While this
method follows a ``fuzzy'' approach, we are able to obtain results, as users tend to
reuse user names across services, or simple variations of them. For example, a user
with Facebook profile under the name “John Doe'” might have an email address
handle “john_doe”, “johndoe80” etc. This module also creates synthetic email
addresses using certain variations of the given user name (e.g., “john_doe”,

1 http://about.me/content/<username>/<network>

ForToo: Forensic Tools Against Illegal Use of the Internet HOME/2010/ISEC/AG/INT/002
www.fortoo-project.eu

D2: Implementation Report - 32 -

“doe_john”) along with the most common email providers (namely
“windowslive.com”, “gmail.com”, “yahoo.com”, “msn.com”, “hotmail.com”) which
are passed to the other modules.
User input. While the above methods yield results, nonetheless, certain accounts
may not be correlated with others belonging to the same user. This could be due to
users creating multiple accounts under completely different user names. As this
correlation can provide invaluable information during the visual inspection of the
data by analysts, our visualization component enables the manual correlation of
accounts. Specifically, the user can correlate an account from one service with
accounts from other services. That information is saved, and the dynamic
perspectives will reflect the new associations. Similarly, the user can remove any
erroneous correlations made during the automatic correlation procedure by the fuzzy
matching module.

4.3 Data Collection
In this section we present a list of the services from which we collect user data, as well
as a description of the types of information acquired. For every online social network,
we also collect any information that is reachable for every one of the suspect's
contacts.
Facebook. This is the main source of information, as it is the most popular online
social network, and users tend to reveal a large amount of personal information on it.
Our crawling component extracts any of the following information that exists:

• Personal information including current location, hometown, education and
work information

• Contact list: apart from the list of the suspect's contacts, we also collect any
custom lists and the contacts contained in each list.

• Status updates and any links contained.
• Chat logs along with timestamps for each message.
• Comments of the suspect on any type of activity, including those of friends.
• Photos: links to the photos and information regarding photo albums, photo

timestamps and tagged users.
• Videos uploaded by the suspect, and videos he has been tagged in.
• Check-ins: the places the suspect has checked into, the timestamp and the data

and coordinates of the place, along with tagged users.
• Likes: activities and articles the suspect has liked.
• Shares: pages the suspect has shared.
• Fan pages (also checks if the user is an administrator of the page).
• Events and the information of the users that participated.
• Groups the suspect is a member of, and the information of the other members.
• Notifications the suspect has received.
• User notes.

ForToo: Forensic Tools Against Illegal Use of the Internet HOME/2010/ISEC/AG/INT/002
www.fortoo-project.eu

D2: Implementation Report - 33 -

• Contact information: we also collect all of the aforementioned data from the
contacts that is viewable through the suspect's account (e.g., a contact's chat
messages are not viewable.)

Twitter. We first collect the account’s information and contact list. That includes the
accounts the suspect follows as well as those following the suspect. We also collect the
suspect’s tweets as well as any tweets re-tweeted, and all available metadata (e.g.
timestamps, location).
Foursquare. We collect the suspect’s check-ins along with the corresponding
metadata. In particular, we collect the timestamp, the venue’s name, VenueID, and
coordinates of the venue. We also collect user’s friends lists, and any links to their
profiles on other networks. Unfortunately, due to limits set by Foursquare API and
website, only the last 100 check-ins of the suspect’s friends can be retrieved.
Skype. We first collect the list of contacts as well as their disclosed information (that
may include information about location, gender and date of birth of a contact). Then
we extract the history of chat logs and relevant metadata, as well as call history (and
duration) and file exchanges. We also attempt to retrieve any exchanged files that are
still located on the hard drive.
Gmail. We collect all emails exchanged with the suspect, and extract the email
addresses and any names associated with those addresses. For each email we also
collect the relevant metadata.
Google. We access the suspect’s account in Google and extract the relevant
information from Google calendar and Google Docs. Specifically, we collect all
calendar entries (which may contain a location, a description, and other users
attending), and download documents accessible (we also retrieve information about
which other contacts have access to the documents).
Google+. We first collect the suspect’s contacts contained in the various “circles”
(i.e. contact groups), and the suspect’s activities; posts, comments, shares, and “+1”s
(similar to likes in Facebook). We extract publicly available data from the accounts of
the contacts, as well as any accounts that have commented on the suspect’s profile
(even if they are not part of one of his circles).
Youtube. We first collect the suspect’s information. Then we extract the history of
watched videos, and channel subscriptions, playlists, uploaded videos and their
comments and favorited videos.
Dropbox. We first locate the Dropbox folder, depending on the suspect’s operating
system, by retrieving the information from the application data. Then, by traversing
the Dropbox directory tree, we extract all the files with their corresponding metadata.
We also keep the application data that can be used for other aspects of forensic
analysis [6].

ForToo: Forensic Tools Against Illegal Use of the Internet HOME/2010/ISEC/AG/INT/002
www.fortoo-project.eu

D2: Implementation Report - 34 -

5 Steganography&Detection&Component&

5.1 Introduction

First, we present elements of the jpeglib library, which is a significant component of
the steganalytic tools we developed. Then, there is an overview of the tools we
created. The technical and scientific problems that occurred and the solutions we
proposed are described in details. There is also a detailed presentation of the critical
decisions we had to make during the implementation phase.

5.2 The jpeglib library

The main characteristics of the tools are accuracy in mathematical procedures and
speed in various processes. The C programming language was chosen because it is
fast and efficient when it uses mathematical functions. Another reason for this choice
is the existence of a very popular library, which is written in C and is called jpeglib.
The Independent JPEG Group provides this library and it is freely distributed
through the Internet. The eighth version was used for this project and more
specifically version 8c. Our involvement in the current project revealed that popular
open source steganographic algorithms such as JSteg and Outguess use the same
library. These arguments led us to the conclusion that jpeglib is the ideal base for our
programs. The library is designed to work under any operating system. We decided to
design stegBennie for Linux because of the free distribution of the operating system.

Jpeglib consists of various functions that helped us to build a reliable environment
where our functions could safely work and provide accurate results. Basically, there
are two types of functionality in this library. One part has to do with the methods that
are responsible for the compression of a bit stream to a jpeg image. The other part
undertakes the decompression procedures from a jpeg image to a bit stream. The
basic steps of the decompression of a jpeg image are shown below.

!

Source'Image'
Data'

8x8'blocks'

Entropy!
Decoder!

Dequantizer+ IDCT!

Table!
specification

s!

Table!
specification

s!

Compressed'
Image'Data'

Figure 5: DCT-based decoding process

ForToo: Forensic Tools Against Illegal Use of the Internet HOME/2010/ISEC/AG/INT/002
www.fortoo-project.eu

D2: Implementation Report - 35 -

The blue arrow shows the phase of our interference with the jpeglib. Our decision was
to leave the library do its excellent work until we reach to the part of the
decompression procedure where we will be able to obtain the quantized DCT
coefficients. The library supplies a function to the users for this cause which is called
jpeg_read_coefficients(). After this step our functions will take care and manipulate
the data that exist in the virtual memory. Before the completion of any task, the
library will be responsible to clean up the memory by freeing any space that was using
while one of our tools was running.

In more details, when stegBennie or compBennie starts running and during the
whole process, jpeglib is responsible for the following tasks:

• Allocate and initialize a jpeg decompression object (although C is not an object
oriented language, the developers of the library use object oriented logic).

• Set up normal jpeg error routines. (These routines will produce errors if the
source file provides the program with e.g. a png image instead of a jpeg.
Basically in this stage we set up the error handler of the library and we will be
using it until we finish the decoding of the image.)

• Specify the data source (in our case the data source is always a file).
• Start decompression of image.
• Read file parameters (this will reach the metadata of the image).
• Read the quantized DCT coefficients.
• Access virtual memory.
• Finish decompression (we have to finish the decompression in a smooth

fashion and this is done by the library itself).
• Destroy decompress object (clean up the space we used).

By building this environment with well tested and trustful functions we are able to
safely extract, copy and manipulate the information that exist in the virtual memory
the library creates in order to work efficiently with all image sizes. The README file
of the library is a good guide if someone wants to familiarize herself with the
standards of the coding style and the maze of procedures and objects that can be
created by jpeglib. Also, the structure.txt and libjpeg.txt should be considered as a
compulsory guidance for new users. We will not talk about any particular detail of
this library here. Further study is left to the reader. We will now present an overview
of the two systems we created and talk about their structure and design.

5.3 StegBennie and compBennie: An overview

For this project we used the standard quantization tables of the Independent JPEG
Group (www.ijg.org). These tables can be easily deduced from a two-phase process:

ForToo: Forensic Tools Against Illegal Use of the Internet HOME/2010/ISEC/AG/INT/002
www.fortoo-project.eu

D2: Implementation Report - 36 -

! Define a quality factor QF (from 1 up to 100, 100 is the best quality) and
calculate R, where R is a parameter estimated by the following equation:

R = (QF < 50) ? 5000/QF : 200 – QF.

! Calculate each coefficient of the quantization matrix M[i] following the
equation:

 M[i] = (R * Q50[i] + 50)/100, where Q50 is the standard matrix.

This in fact, is the process we are following in our function init_standards() which
initializes the standard arrays for our program. These matrices are been used by
various programs such as GIMP and by devices like Android smartphones. The logic
behind the construction of our tools is simple and it is described at the following
figure.

Figure 6: The basic logic structure of stegBennie and compBennie.

!!!!!!

This figure says that the basic logic behind stegBennie and compBennie has to do
with the calculation of the appearance of the significant digits of the quantized DCT
coefficients of all the components of a colour jpeg image. Then we should estimate
their expected distribution and finally compare the deviations between the expected
and the calculated distributions. StegBennie, which is our main blind steganalytic
tool, will use this information to decide if the image is suspicious or not.

As already mentioned, we should be able to predict the distributions of the first digits
of the quantized DCT coefficients in order to compare them with the distributions
that we will generate from the analysis of a colour image. We should be able to
predict how a jpeg image behaves if we know its quality factor. The quality factors
that were analyzed for this project are QF = 100, 90, 80, 75, 70, 60, 50. Hence, at this
stage (as a proof of concept) we can only investigate jpeg images compressed with
those quality factors. Therefore, if during a forensic task, one of our tools tries to
analyze an image with a different quality factor than the above, the program exits
with a graceful message. The approximation of the behaviour of a colour image was
successfully done using compBennie and Matlab. It is further discussed at the
following topic.

ForToo: Forensic Tools Against Illegal Use of the Internet HOME/2010/ISEC/AG/INT/002
www.fortoo-project.eu

D2: Implementation Report - 37 -

5.3.1 Analyzing the behaviour of a colour jpeg image with compBennie

When we are talking about the behaviour of a colour jpeg image we focus our interest
on its quantized DCT coefficients and more specifically on the distributions of
appearance of their first digits. We mimicked the methodology Fu et al. (2007) used
at their research to bring new results that were considering both the luminance and
chrominance components of the jpeg images. A new program was developed to help
us to collect the distributions of the quantized DCT coefficients. Its name is
compBennie and consists of two modules: collect and compare.

The standard header file dirent.h was used to read any folder. After performing the
initialization of the output files and after the setting up of the error handler and the
decompression object, compBennie reads the quantized DCT coefficients of each
image. This information is stored in a virtual memory created by the jpeglib library.
Our functions are responsible for the manipulation of the virtual memory. They are
using jpeglib’s function access_virt_barray() for this cause. The core module’s
functionality is been discussed in more details later. A flow chart will explain what the
core module does. Basically, the outcome of its use is an array containing the
frequency of the appearance of the first digits of the quantized DCT coefficients of the
image (digits 1 to 9). After this step the program writes the distributions of each first
digit for the whole folder in separate text files.

The same procedure continues within a loop until there is no other jpeg file in the
folder. When the program completes successfully its task we will be provided with
nine files containing the percentage of distribution of appearance of each digit of the
coefficients for all the jpeg images that exist in the particular folder. It should be
underlined that, before we perform this experiment, we should be absolutely sure
that the images in the folder we will examine are compressed under the same quality
factor. We are trying to imitate a training scheme at this point and the data we
collect should be accurate. Also, the folder must contain only jpeg images in order to
finish the processing without any disturbance. In any other case, the error handler of
jpeglib will produce an error and cause program termination.!!

Apparently, the most important part of all the modes of stegBennie and compBennie
is ‘the core module’. It is responsible to perform all the calculations after we access
the virtual memory. Its design is simple and is described by the following flow chart.

ForToo: Forensic Tools Against Illegal Use of the Internet HOME/2010/ISEC/AG/INT/002
www.fortoo-project.eu

D2: Implementation Report - 38 -

!

Yes$

No!Yes!

No$

Yes!

No$

Start!

All!
components?!

All!blocks?!
(height)!

Access$virtual$memory$

Proceed!

Allrow
examined?$ Read$memory$

Store$temporarily$

Keep$record$

All!coefficients?!
No$

Yes!

Figure 7: The ‘core module’.!

!

Its functionality is based on the way that the quantized coefficients are stored in the
virtual memory. At a glance, there are big blocks of data, called MCUs, which contain
several blocks of 8x8 integers. The above module is responsible to read all coefficients
that exist in all DCT blocks in all MCUs. The latter are virtually stored in rows and
columns and the library itself is responsible to provide non-interleaved MCUs and
exclude any dummy DCT block that might be stored at the right and bottom side of
the inspected image. More information and details can be found in structure.txt in
jpeglib.

 This is the reason that forces the core module to perform three loops. The first is for
each component of the image (luminance and chrominance); the second loop is for
the columns and the third for the rows. When we finally reach an 8x8 block of the
quantized coefficients, we use a temporary array to copy and store them in a different

ForToo: Forensic Tools Against Illegal Use of the Internet HOME/2010/ISEC/AG/INT/002
www.fortoo-project.eu

D2: Implementation Report - 39 -

place, where we can safely remove their first digit. This is been done by the
keep_record() function. Its task is to extract the first digit of the coefficient and
increase the variable that counts the appearance of that digit. If, for example, the
coefficient is 235, its first digit is 2 and the counter that keeps the record for 2s will be
increased by one. Also, we are counting the total coefficients we have examined.
Hence, at the end of the program we will know the appearance rates of each first
digit. Their distributions will be calculated as a division of the appearances by the
total numbers counted.

5.3.2 UCID and JPEG

After the description of the inner functionality of compBennie we will discuss the
methodology we used to create a model that can predict the distributions of the
quantized DCT coefficients of any colour image. This can be feasible if we prove that

equation p n()= N ⋅_og10 1+
1

s +nq
"

#
$

%

&
' , x = 1, 2, …, 9 (see D1 - 3.4.2) is still a reliable

model that describes the probability of appearance of the first digits of the quantized
DCT coefficients of a jpeg image, even if these were collected from all the components
of the image. We used the second version of the UCID (Schaefer & Stich, (2003)) for
this experiment which contains 1338 uncompressed tiff images and wrote a script
that used Matlab’s functions imread and imwrite to compress the images within
seconds. Then we used compBennie (collect mode) to calculate the distributions of
the first digits of the quantized DCT coefficients.

After this step we calculated the mean distributions for each digit.! The mean
distributions and Matlab’s Curve Fitting Toolbox were used to estimate the goodness-
of-fit of the generalized Benford’s Law. To avoid the calculation of any complex values
from Matlab we had to determine the boundaries of the parameters N, s, q. For this
reason we defined that:!

• - Inf < N < Inf
• 0 < q < 2
• - 0.8 < s < 1

The use of the curve fitting toolbox (Matlab) for all quality factors resulted in the
conclusion that gBL is a perfect model which can describe the distributions of the
appearance of the first digits of the quantized DCT coefficients of a colour jpeg image
in a very satisfactory manner. The following figure illustrates the fitting of gBL (red
colour) for the mean distributions of images compressed with quality factor QF = 90.
(The distributions are symbolized by the blue dots.)

ForToo: Forensic Tools Against Illegal Use of the Internet HOME/2010/ISEC/AG/INT/002
www.fortoo-project.eu

D2: Implementation Report - 40 -

Figure 8: Goodness-of-fit of gBL for colour images compressed with QF90.!

The fitting results for all the quality factors we examined are presented at D1 – 3.4.3.
In that document we show the values of parameters N, q, s for each quality factor and
there is also a column that represents the Sum of Squares Due to Error (SSE). The
given table will help us calculate the expected distributions of the appearance of the
quantized DCT coefficients. The idea behind this concept is that given the
quantization table of the luminance of a jpeg image, we can decide the compression
quality that was used during the encoding. Then, we can calculate the distributions of
appearance of the coefficients and compare them with the expected distributions. We
will be able to estimate the deviations between the distributions (current and
expected) and decide if the jpeg image is suspicious or not.

If, for example, the quality factor of the image is 80, the expected distributions will be
calculated by the Generalized Benford’s Law equation (D1 – 3.4.2). N will be
substituted by 1.344, q = 1.685 and s = - 0.376.

The next table will give the expected distributions for this case.!

First digits Expected distributions (%)

1 55.83

2 17.61

3 9.01

4 5.58

5 3.85

6 2.83

7 2.19

8 1.75

9 1.43
Figure 9: The expected distributions of first digits when DF = 80.

ForToo: Forensic Tools Against Illegal Use of the Internet HOME/2010/ISEC/AG/INT/002
www.fortoo-project.eu

D2: Implementation Report - 41 -

Calculations like the above will take place while the program is running and are
closely connected to the quantization tables that were used during compression.
These distributions will give us a clue about how violent an embedding algorithm can
be, when it performs steganography.

!

5.4 The classification module

At this stage of the forensic process we are aware of the expected distributions of the
significant digits of the quantized DCT coefficients. The next task we have to
accomplish is to measure the impact of steganography on these distributions. We can
use the results from this research to develop a function that will be responsible for
making decisions. It will be able to state if a jpeg image seems suspicious or not. The
needs of the particular step of the project were assisted by an extension of
compBennie; the compare module.

5.4.1 The compare module

The design of this module shares the same logic with the collect module of
compBennie. Our primary goal is to successfully and reliably manipulate the data
provided by jpeglib and introduce a novel method for image steganalysis using the
gBL. For this module the program will use ten files for writing. One file, which is
called data.txt, will contain the current and expected distributions of the first digits of
the coefficients and also the deviations that occur between them. The other nine files
contain the current distributions of each digit for all the inspected images; just like
the collect module. We should underline that these files will be stored in a folder the
user indicates through the command line. Then, compBennie starts the
decompression, reads the header of the image and looks for the quantization table of
luminance. The next phase is the calculation of the distributions from the core
module. After that, the program will compare the quality factor that read at the
previous stage and will seek for a match within its known tables. If the table is known
(which means that is the quantization table for QF = 100, 90, 80, 75, 70, 60, 50), it
will proceed to the next phase, which comprises the calculation of deviations, the
storing of data into the ten files and the cleaning of memory from the garbage it
produced. If compBennie deals with an unknown quantization table, a message will
be printed so the user can be informed and no further action will be taken for this
image. This procedure will continue until all images will be examined.

CompBennie proved to be the most valuable ally to our attempt to decide which
factors we should consider for developing the function that determines whether an
image is suspicious or not. We also used it when we had to calculate the deviations of
the distributions of the first digits of images that contained hidden data. We did that
because it was a compulsory step for our research; we should estimate the damage
that various steganographic algorithms cause to the distributions of the first digits of

ForToo: Forensic Tools Against Illegal Use of the Internet HOME/2010/ISEC/AG/INT/002
www.fortoo-project.eu

D2: Implementation Report - 42 -

the quantized coefficients. For testing reasons we used free distributed tools; JPHide,
Outguess and Vsl.

!

UCID% Q50%
!

Figure 10: The methodology we used to conduct our experiments.

!!!

The figure above follows symbolically the sequence of the steps we made so far and
the work that we will now discuss in more details. From the UCID dataset we created
seven folders of jpeg files. For this part of the project we randomly chose images from
the folders, which (each of them) contain 1338 jpeg files. Various messages were
hidden in these images using the three algorithms we have already mentioned. Then,
compBennie gathered all the information we needed. We used the compare module of
compBennie. The result of this process was the production of another text file
(data.txt), which describes the deviations of the distributions of the first digits of the
quantized DCT coefficients for each stego carrier. By doing this, we will have a clear
picture of any consequences that these algorithms cause to the distributions of the
first digits. The next figures show the output of compBennie for a pure jpeg image
and the output for the same image, which contains a hidden text file embedded by
JPHSWIN, respectively.

!!!!!!

Figure 11: CompBennie: Output for pure image (left) and stego carrier (right).!!

From the comparison of the third columns of the above figures, it is obvious that the
stego carrier causes some disturbances to the distributions of the first digits. Digits 1,
2, 4, 6 and 8 changed their probability of appearance when the message was

ForToo: Forensic Tools Against Illegal Use of the Internet HOME/2010/ISEC/AG/INT/002
www.fortoo-project.eu

D2: Implementation Report - 43 -

embedded. To be more precise, all the distributions are altered but the deviations of
the five digits we mentioned before seem to be more violent.

5.5 The final decision

At this stage of the project we tried to verge on the issue of finding a reliable indicator
that could safely reveal the suspicious image. We focus our interest on the deviations
of the distributions of the first digits of the quantized coefficients of pure images and
stego carriers. The stego carriers are the same jpeg images but they contain messages
embedded by JPHSWIN.

We carefully examined about 480 images compressed with different quality factors.
The following figures illustrate the deviations of the distributions of the first digits of
images compressed with quality factor 75 (more information about all the digits can
be found at D1 – 3.4.3 – Fig. 10). The blue line indicates the deviations that emerged
from the inspection of pure images and the red line indicates the deviations for the
same images after applying steganography on them.

!(a)!!!! (b)

Figure 12: Deviations in distributions of qDCT coefficients.

!

The horizontal axis of the preceding figures represents the images we examined and
the vertical axis states the percentage (%) of the deviations of the distributions of the
examined digit. The overview we got by examining the figures we formed from
images that were compressed by various quality factors was similar to what we can
see on figure 21.

A first attempt to analyze the data we collected and the differences between the
deviations of the distributions of the pure images and the stego carriers showed that
often the disturbances were not very crucial. But in most of the cases there were some
differences between the deviation of an image and the deviation of the stego carrier

ForToo: Forensic Tools Against Illegal Use of the Internet HOME/2010/ISEC/AG/INT/002
www.fortoo-project.eu

D2: Implementation Report - 44 -

that were larger than 5%. We counted the number of the digits that present this
difference for all images and concentrated the results into the next table.

QF 1 2 3 4 5 6 7 8 9

50 8.82 50.0 5.88 52.94 14.71 47.06 20.59 52.94 38.24

60 17.65 55.88 11.76 55.88 29.41 44.12 11.76 32.35 17.65

70 8.57 55.88 14,29 61.76 17.65 23.53 5.88 50.0 17.65

75 2.86 29.41 11.76 47.06 2.86 17.65 14.71 38.24 8.82

80 0 47.06 20.59 32.35 5.88 14.71 8.82 35.29 8.82

90 0 17.65 35.29 20.59 5.88 8.82 14.71 17.65 5.88
Figure 13: Percentage of digits with differences larger than 5%.

The contents represent the percentage (%) of images whose difference of deviations
was greater than 5%. We can see that the digits with the roughest alteration of their
deviations are digits 2, 4, 6 and 8. This is an indication that persuades us to focus our
interest on these particular digits. Furthermore, previous figure (b) reveals a
characteristic of digit 2 that no other digit seems to have.

When we examined pure images the deviations of digit 2 were very stable. The range
of these deviations was quite convenient and usually varied from 0 to 3 or 4 per cent.
Except from that, the deviations of digit 2 after the embedding of a message on the
same images behaved in a similar fashion, but this time the deviations exceed the
threshold of 4 per cent. We cannot see the same attitude at digit 1 for example. Here,
the deviations are within a small range but we can see that the two lines have not the
same behaviour compared to the two lines of figure (b). In figure (b) we can see that
the blue line is almost always below the red line. Thus, in most of the cases, we expect
that an image that contains a hidden message will present deviations higher than a
certain threshold T. In the specific example the threshold could be T = 3. It becomes
more interesting if we say that the thresholds for the quality factor we examined vary
from 3 to 4. It seems that only digit 2 presents this stable behavior.

Taking these findings into consideration we concluded that the most stable and
reliable indicator for a suspicious image to be revealed is the deviation of digit 2. If
this deviation exceeds a specific threshold, which depends on the quality factor of the
compression of the examined image, we can conclude that the image is suspicious.
We approximated these values statistically for each compression quality and
presented them in D1. (See Figure 11 - D1 – 3.4.3).

ForToo: Forensic Tools Against Illegal Use of the Internet HOME/2010/ISEC/AG/INT/002
www.fortoo-project.eu

D2: Implementation Report - 45 -

5.5.1 Outguess and Vsl

 As already mentioned in previous paragraphs the same experiments were performed
to jpeg images using Outguess and Vsl as the embedding algorithms. We analyzed the
data using the same methodology and discovered that the impact of steganography
on the distributions of the first digits was dramatic, as it can be seen in next figure.
We also confirmed that the deviations of digit 2 were smooth and the thresholds of
table 7 were sufficient and capable to detect a suspicious jpeg image.

A closer look to the effects of the application of steganography with Outguess and Vsl
revealed that both algorithms change the quantization tables of the images when they
embed a message into their internal structure. Outguess always use the quality factor
of 75 and Vsl uses the table Q100. As a consequence, every time compBennie and
stegBennie investigate stego carriers made by Outguess or Vsl, they consider that the
quality factors are 75 and 100, respectively. This fact causes the expected
distributions of the inspected images to be significantly different than the calculated.
For example, if the original image had a quality factor of 60 and we use Vsl to hide
data in it, the original expected distribution of digit 2 would be 17.515325% but the
expected distribution that our tools consider is 19.469505% because they read in the
header of the image that the quality factor is 100. This usually results in large
differences between the current and expected distributions and sometimes these
deviations can be critically major (see the following figure).

!!

Figure 14: Deviations caused from Outguess (left) and Vsl (right).!

!

ForToo: Forensic Tools Against Illegal Use of the Internet HOME/2010/ISEC/AG/INT/002
www.fortoo-project.eu

D2: Implementation Report - 46 -

Our research revealed that Outguess leaves the quantization table of quality 75 as a
fingerprint or signature. The same goes for Vsl which turns the quality factor of the
stego carriers to 100. We used these fingerprints when we built the decision making
function of our programs. If we try to investigate an image, which has a quality factor
of 75 or 100 and the deviation of digit 2 is really large, we can deduce that Outguess
or Vsl was used, respectively.

5.6 StegBennie

The study on the behaviour of the first digits of the quantized DCT coefficients of
colour jpeg images and the analysis of the data we gathered from their distributions
and deviations resulted in the development of our universal steganalytic tool which
we called stegBennie. This tool uses the characteristics of the distributions of digit 2
and it is a new approach to the problem of steganalysis of colour jpeg images.
StegBennie will apply a statistical attack on a jpeg image using the generalized
Benford’s law and will estimate whether it is a suspicious image or not.

The design of stegBennie should now look familiar. We basically extended the
functionality of compBennie, which is the program we used to collect information
about the distributions and deviations of the first digits. StegBennie has three modes;
full, file, folder.

The file mode expects from the user to input an image. The outcome will be a short
analysis of the image displaying the quality factor, the counted digits, the
distributions (current and expected) of first digits and the percentage of their
differences. Finally, stegBennie will decide if the inspected image is suspicious using
the facts we presented in this chapter.

Small variations of the basic logic of the program are introduced by the full mode and
the folder option. The former does the same job with the file option but it also creates
a text file that contains a list of the examined DCT blocks.

The next figure shows a screenshot of such a file where the DCT coefficients can be
clearly seen.

ForToo: Forensic Tools Against Illegal Use of the Internet HOME/2010/ISEC/AG/INT/002
www.fortoo-project.eu

D2: Implementation Report - 47 -

Figure 15: A screenshot of the examined DCT blocks.!

!

We also provide a screenshot of the main output of the “full’ and “file” options.

Figure 16: The basic output of stegBennie.!

ForToo: Forensic Tools Against Illegal Use of the Internet HOME/2010/ISEC/AG/INT/002
www.fortoo-project.eu

D2: Implementation Report - 48 -

The folder option is most powerful and useful among the others. This feature of
stegBennie will provide the opportunity to examine a folder, which consists of jpeg
images. The steganalyst must be sure that only jpeg images are contained in the
examined folder in order to successfully complete the task of folder investigation. In
any other case, the error handler of jpeglib will produce an error and the report for
the contents of the folder will not be completed. The report will present stegBennie’s
judgment about the behaviour of the first digits of each image in the folder. It will
also inform the user about any image that cannot be examined because of its
unknown quantization table.

The following figure is an outline of the basic parts of the ‘file’ mode of stegBennie.
The basic difference between this and the flow charts we have already seen is the
make_decision() function. The logic, as it can be seen, is exactly the same with the
logic we used earlier to develop compBennie. ‘Full’ and ‘file’ modes do not need to
open any folder and this is why the design looks easier to read. ‘Folder’ mode’s flow
chart seems quite identical to the ‘compare’ module of compBennie except that there
is a make_decision() function at the end of the first loop before the program writes
into files about the decision that stegBennie made. For this reason we will only
provide the flowchart of the ‘file’ mode of stegBennie (see next figure).

ForToo: Forensic Tools Against Illegal Use of the Internet HOME/2010/ISEC/AG/INT/002
www.fortoo-project.eu

D2: Implementation Report - 49 -

!

Finish!decompression!&!clean!up!

Known%
QF?%

Print!
message!

Print!
distributions!

Calculate!
current!&!
expected!

Compare!QF!
with!known!

Make!
decision!

Finish!

Read!
coefficients!

Memory!
NULL?! Print!

Error!

Core!module!

Obtain%QF%

Specify!data!
source!

Initialize%arrays%

Print%info%

Clean%up%

Exit%

Start%

Setup!decompression!
object!&!error!handler!

Yes!

Yes!

No!

No!

ForToo: Forensic Tools Against Illegal Use of the Internet HOME/2010/ISEC/AG/INT/002
www.fortoo-project.eu

D2: Implementation Report - 50 -

Figure 17: File module of stegBennie.

We will discuss briefly the design of the file module. First, we initialize the arrays we
will use; a 1x9 array that counts the appearance of each digit and an 8x8 block, which
is used as a temporary storage array. Then, the functions of jpeglib prepare a stable
environment where we can calculate the distributions of the first digits and their
deviations from the expected. We have to set up the error routines with
jpeg_std_error() and then initialize the decompression object with
jpeg_create_decompress(). The next step is to specify the file we want to decompress
and read the metadata of the image; these tasks are done by jpeg_stdio_src() and
jpeg_read_header(), respectively. Now, the system is ready to read the quantized
DCT coefficients by using the jpeg_read_coefficients() function. Note that the
functions of jpeglib always start with jpeg.

If all coefficients have been read successfully, stegBennie will look for the
quantization table of the luminance and will print some information about the
quantity of MCU blocks of the image. After this step, the core module will calculate
the number of the first digits of the blocks. (The only difference between the file and
the full module is that, at the current stage, the core module will have to do a printing
task when it reads the coefficients of each block). Then, stegBennie will calculate the
quantization tables for the known quality factors using init_standards(). This step
was made because we wanted the program to be expandable and be able to work with
more quality factors at the future.

The final phase of the process is the comparison of the quality table of the image with
our virtual database of tables using compare_quality(). If this array is a perfect
match with an entry in the database, we can proceed. Otherwise, the program informs
the user that it is not able to decide for this image and exits. If stegBennie examines
an image with a known quality factor it will get the expected and the current
distributions of the digits and, at the end, it will make a final decision about the
image. This step involves three functions; gbl_distribution(), compare_distr() and
make_decision().

Every time the tool exits or when it successfully completes a task, it will free the
memory that was used, close any opened files and destroy the decompression object.
In the folder module of stegBennie the decompression object will be destroyed only
when all the images that the folder contains have been examined. This is a feature
that the decompression object provides and is extremely powerful because it gives the
opportunity to reuse it for multiple decompressions and save a lot of valuable time
while the program is running.

It has been done clear that the use of the core module is vital for stegBennie. The
following example gives an overview of the calculations it performs and its simple
logic. First of all there are some basic arrays that have been initialized to zero as we

ForToo: Forensic Tools Against Illegal Use of the Internet HOME/2010/ISEC/AG/INT/002
www.fortoo-project.eu

D2: Implementation Report - 51 -

said previously; they are called distribution and curr_block. The following figure
shows their initial state before the examination of the first block of coefficients. We
assume that block D (next figure), which holds quantized DCT coefficients, is the first
block in virtual memory that will be examined by stegBennie. After the reading of
block D is completed, stegBennie copies the 8x8 block into a temporary array which
is called curr_block. We made this choice because it seems safer to manipulate our
own array than the original from the virtual memory.

!

!!!!!distribution:!

!

!curr_block!=!

!
!
!
!
!
!
!
!
!
!
!

"

#

$
$
$
$
$
$
$
$
$
$
$

%

&

00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

!!!D!=!

!
!
!
!
!
!
!
!
!
!
!

"

#

$
$
$
$
$
$
$
$
$
$
$

%

&

−−−

−−−−

−−−−−

−

00000000
00000011
00000122
00000244
00002467
000127135
0001471814
00115122075

Figure 18: Basic data types.

The examination of curr_block (which now is identical to D) starts with the top left
coefficient. This is the DC coefficient and it is ignored. We agreed on this exclusion
following the logic of the previous work of Fu et al. (2007). A possible explanation for
this exclusion from the gathering of first digits is that, if we look the DCT blocks of an
image, it is quite common to see identical blocks, which contain only the DC
coefficient. This might change the distributions drastically. To continue with the
example, next digit in row is 20. An integer division by 10 will give 2 as the first digit.
StegBennie will increase by one the variable that counts the number of the examined
coefficients and the second column in the distribution array. The tasks of extracting
the first digit and distributing in the distribution array are done by calculate() and
distribute() functions, respectively. The next number in row is number 12. The first
digit is 1, the counter and the first column of distribution array will be increased by
one and so on, until every coefficient will be examined. The algorithm skips zeros and
negative numbers because Benford’s law stands for natural numbers only. Since all
AC coefficients of the block have been examined, the curr_block array is set to zero
and the same procedure will be repeated for all DCT blocks. The distribution and the
counter stay untouched because we need them for the calculation of the percentage of
appearance of each first digit.

0 0 0 0 0 0 0 0 0

ForToo: Forensic Tools Against Illegal Use of the Internet HOME/2010/ISEC/AG/INT/002
www.fortoo-project.eu

D2: Implementation Report - 52 -

The make_decision() function depends on the quality factor of the examined image.
Its first concern is to set the threshold T that will use to decide if the deviation of
distribution of digit 2 is greater than T. If deviation is greater than T, the image will
be flagged as suspicious. If the deviation is greater that a specific limit and the quality
factor of the compression is 75 or 100, stegBennie will inform that Outguess or Vsl
was probably used to hide data in this image. Sorting the deviations of digit 2 of the
pure images and calculating the maximum value that occurred defined the limit. This
kind of value became the limit for each quality factor. Finally, if stegBennie deals with
images with the highest quality factor and the deviation of digit 2 is less than the
limit, the output will inform the user that the decision might be inaccurate.

This paragraph completes the detailed description of the work we did in order to
extend the previous results that could predict the behaviour of grey scale jpeg images
and develop a program, which is able to detect a stego carrier. The tools we developed
should be easy to use and should need only an input path and an output path. The
completion of this project had one major prerequisite; to study the behaviour of
colour jpeg images and especially the distributions of the first digits of the quantized
DCT coefficients. We should also confirm the validity of the gBL and propose a
method that could distinguish a suspicious image.

5.7 Details on Software Design

The following figure show the dependencies of the files we created.

!

!

!

!

!

!

!

!

!

Figure 19: Dependencies of files with standard and library header files.

steg.
c

comparing
.c

stegben.c

stegben.h

stdio.h dirent.h

jpeglib.h jconfig.h jerror.h

string.h string.h math.h

testEnv.c

ForToo: Forensic Tools Against Illegal Use of the Internet HOME/2010/ISEC/AG/INT/002
www.fortoo-project.eu

D2: Implementation Report - 53 -

We did not use the whole jpeglib but only the files we needed. We created only four
major files for this project and one for testing purposes (testEnv.c). Stegben.h is the
header file for our tools, steg.c contains the main function for stegBennie,
comparing.c is the main function for compBennie and stegben.c includes all the
functions we had to write during the development phase. The following figure
describes the functions in stegben.c that are been used by steg.c and comparing.c.
Also there is a list with the functions of stegben.c and the functions we borrowed
from the library.

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

steg.c

intro_steg()
usage_info_steg()

full_module()
file_module()

folder_module()!

stegben.c

alloc_vector()
alloc_block()

alloc_dvector()
calculate()
distribute()

keep_record()
init_benford()

compare_distr()
compare_distr_dir()

gbl_distribution()
compare_quality()

compare_quality_silence()
compare_quality_dir()

init_standards()
print_info()

print_info_steg()
print_info_comp()

intro_steg()
intro_comp()

usage_info_comp()
usage_info_steg()
make_decision()

make_decision_folder()
collect_module()

compare_module()
full_module()
file_module()

folder_module()
test_environment()!

comparing.c
intro_comp()

usage_info_comp()
collect_module()

compare_module()

Jpeglib

jpeg_std_error()
jpeg_create_decompress()

jpeg_stdio_src()
jpeg_read_header()

jpeg_read_coefficients()
access_virt_barray()

jpeg_finish_decompress()
jpeg_destroy_decompress()!

Figure 20: Description of function use.

ForToo: Forensic Tools Against Illegal Use of the Internet HOME/2010/ISEC/AG/INT/002
www.fortoo-project.eu

D2: Implementation Report - 54 -

5.7.1 Implementation and testing

During developing stages the waterfall software development model was used. The
following figures present schematically an overview of the lifecycle of the project and
the phases of the software development.

Figure 21: Lifecycle of the project.!

Figure 22: Development phases (compBennie and stegBennie).!

!

The testing in both cases was a two-phase process. First, for compBennie, we did unit
testing at the collect and the compare modules. Then, we integrated the two modules
into one single program and performed the acceptance testing for compBennie. The
same procedure was done for the three parts of our main tool, stegBennie. We tested
separately the performance of ‘full’, ‘file’ and ‘folder’ module and then we unified the
three different components to give to the steganalytic tool full functionality and a
range of choices. Also, we tested the ability to create the decompression object and
read the coefficients of a jpeg image, which was the starting point of each module. For
this reason we provide the testEnv.c file which uses the test_environment() function.
More information about testing, installing and using the two tools is provided in
READTHIS.txt file and in the Appendix B of this report. Jpeglib should be already
installed in order to proceed with the installation of compBennie and stegBennie. The
installation process involves the testing of the library itself; thus, we do not have to
write any testing script for the library.

ForToo: Forensic Tools Against Illegal Use of the Internet HOME/2010/ISEC/AG/INT/002
www.fortoo-project.eu

D2: Implementation Report - 55 -

6 Visualization&components&

6.1 Visualization of Social Network interactions
This section describes various methods for visualizing data collected using the
methodology described on chapter 4. The plethora of services that can be used by
suspects require a grouping of this disjoint information into a unified set, where
actions across services are correlated (e.g. what type of communication does the
suspect have with user X from all services). Furthermore, the abundance of available
information necessitates the ability to shift focus to specific activities (e.g., status
updates on Facebook), and interactions (e.g., users with the largest amount of shared
activities with the suspect). Thus, we provide the analyst with dynamic “perspectives”
of varying granularity, with aggregated correlations as well as fine-grained views of
the collected data. We have several viewpoints for creating the different perspectives.
Our goal is to provide a modern visualization platform that will offer a variety of data
representations. Therefore, the visualization component is developed as a web
application. The vast amount of data, dictated an event-driven and asynchronous
approach, where data is fetched upon request. The front-end issues AJAX requests
using the jQuery framework which is also responsible for data manipulation. Data
visualization is performed using the D3.js [2] Javascript library. This library provides
a broad variety of visualization and schematics like calendar views and graph layouts
among others. Moreover, we leverage the Google Maps Javascript API [10] to render
location-based information on a map.
Aggregated. Here we present aggregated statistics regarding the most interesting
activities from all the services. With one glance, the analyst can see which services the
suspect mainly uses, and what data is available. In Figure 3 we see screenshot
regarding some of the aggregated statistics presented in this viewpoint. Specifically,
we can see the most important types of data across services and a more detailed
description of activities per service, respectively.

(a) User granularity (b) Service granularity

ForToo: Forensic Tools Against Illegal Use of the Internet HOME/2010/ISEC/AG/INT/002
www.fortoo-project.eu

D2: Implementation Report - 56 -

Figure 3: Aggregated statistics provide statistics information at a user-granularity and
service-level granularity.

Service. Here we focus on a specific service, and present aggregate statistics
regarding the users activities. A list presents the contacts that have had the most
communication with the suspect. Next, as shown in Figure 4, the structure of the
social graph is depicted as well as any interconnections between all contacts. The size
of each node is based on the number of connections the contact has. Thus, the analyst
can immediately recognize heavily connected users or outliers. The graph can plot
contacts of a specific service as shown on this figure, or a combined view of all
services where the contact’s of each service have a common color. Each graph node
represents a user, and when clicked presents the contact’s name and photo.
Furthermore, a contact search function dynamically detects and highlights nodes in
the graph, allowing investigators to quickly identify contacts of interest inside the
graph.
Figure 5 presents a screenshot of a graph that visualizes the total communication
between the suspect and online contacts. The amount of shared activity defines the
width of the connector. Thus, users having greater amout of communication can be
easily identified and scrutinized. Moreover,upon clicking the connector, a window is
shown, presenting any shared activities between two edges of the connector.

Figure 4: An example plot of the
suspect’s social graph. The suspect
is depicted with the green node. The
size of a node is defined by its
degree of connectivity. Edges toward
the suspect’s node are grey, while
edges between contacts are blue.

 Figure 5: This graph plots the overall
communication between the suspect and his
contacts. This visualization facilitates the
recognition of important contacts, as the
volume of communication determines the
width of the connection between suspect and
contact.

User. A very important viewpoint is that which focuses on a specific user. Once the
analyst has identified online contacts that might be of interest, he can use one of two
perspectives. First, one can select the contact and be redirected to an aggregated
statistics viewpoint, containing all information available regarding the actions of that
contact across all services (based on the number of accounts that have been
associated during the correlation phase). Second, the analyst can choose to focus only
on the shared activities the contact has with the suspect across all services. That
includes, chat messages, emails sent, wall posts, shared photos, etc. The coarse-
grained perspective presents aggregated statistics, while the more fine-grained

ForToo: Forensic Tools Against Illegal Use of the Internet HOME/2010/ISEC/AG/INT/002
www.fortoo-project.eu

D2: Implementation Report - 57 -

perspective allows to focus on a specific type of activity. In both viewpoints, the
investigator can ultimately view all individual activity and communication resources,
e.g., exchanged messages, pages “liked”, or Skype calls. Furthermore, the viewpoints
can be dynamically configured to visualize data from one or all services.
Timestamp. A very important factor for visualizing relevant data, is the factor of
time. Every perspective contains a color-coded calendar which depicts the amount of
conducted activity of a user user on a specific date. A segment of this calendar is
shown in Figure 6. Light-green squares depict days where the user had few activities
where red squares represent days with high activity. Blank squares indicate that the
user did not exhibit any activity on that particular date. However, the analyst might
wish to focus on the activities of the suspect during a specific time period which is of
interest. As such, certain viewpoints can dynamically change and allow one to focus
on a specific time window.

Figure 6: Extract of the calendar element, depicting the email exchange activity of the
suspect over a period of five months.

Content. A word cloud provides the analyst with a quick view of the most common
words contained in the suspect’s communication, which can be across services or
focused on a specific service or user. Thus, recurring motives and topics can easily be
spotted. In the case of Twitter, we also create a word cloud with the hashtags (i.e.,
topics) of the suspect’s tweets as we show in Figure 7. This can also reveal subjects
that the suspect tends to comment on (e.g. politics, religion) and can be relevant to
the analyst’s investigation. Clicking on one of the terms will fetch all the messages,
emails, tweets or posts containing the term. Furthermore, we also follow a more
targeted approach, by employing the list of keywords that the US Department of
Homeland Security searches for in social networks [15]. Specifically, we search for
377 keywords belonging to 9 categories, ranging from terrorism to drug-related
incidents. The number of occurrences are broken down per-category and per-service.
By clicking on the respectful information, the analyst is presented with the resources
that contain the keywords.

ForToo: Forensic Tools Against Illegal Use of the Internet HOME/2010/ISEC/AG/INT/002
www.fortoo-project.eu

D2: Implementation Report - 58 -

Figure 7: The word cloud shows the words most frequently contained in the suspect’s
communications. Here we see an example created from a user’s Twitter hashtags
(topics).

Location. A very important piece of information is the suspect’s location. Using
information from the suspect’s check-ins and residence we plot a map with the
locations he has visited, and also visually annotate the amount of times each location
has been visited. Furthermore, the analyst can also define a time window, within
which all of the suspect’s activities are correlated with that location. For example,
with a time window of one hour, by clicking on the location marker, a window will
inform of all the activities (e.g. chat, Skype calls) the suspect conducted up to one
hour after the check-in. Thus, the analyst can associate important activities to specific
locations or even search for patterns of activities at certain locations.
In Figure 8(a) we can see an example screenshot showing the aggregated check-ins at
a city-level granularity. Figure 8(b) depicts a closer view of a specific region, with the
information window for a specific check-in. The window presents the name of the
venue, the check-in timestamp and a series of activities that have been completed
within a one hour time window. All elements are clickable for presenting the
resources of interest.
Furthermore, as a specific period might be of interest, we can plot the check-ins
conducted during a specific period of time. Also, the investigator can select a contact,
a distance X and a time duration T , and the map presents any check-ins that the
suspect and the contact conducted with a time difference up to T at venues that have
a maximum distance of X.

ForToo: Forensic Tools Against Illegal Use of the Internet HOME/2010/ISEC/AG/INT/002
www.fortoo-project.eu

D2: Implementation Report - 59 -

(a) Aggregated view (b) Close-up view

Figure 8: Two views of the map plotting the suspect’s check-ins. (a) An aggregated city-
level view. (b) The details of a specific check-in and the associated activities.

Photographs. A valuable resource of information in criminal investigations are
photos found in social networks, as demonstrated in the case of the Vancouver riots
[41], where vandals were identified through photos posted in social networks. The
investigator can select to view all the photos collected from the suspect’s profiles. Any
available user tag information is also presented, and statistics show the contacts with
the most common photos with the suspect (based on tag information).

6.2 Timeline Analysis Toolkit
In this section we look at how our timeline analysis tool (TAT) may be used to

provide context in the analysis of call logs from an actual police investigation.
During the night of 17/9 to 18/9, just before midnight, a man was stabbed to death

after being involved in an argument with a group of people. While the confrontation
was in progress, the police were called and arrived shortly after the victim had been
stabbed but while he was still alive. The victim, before, expiring, identified the
assailant to the police officers. The attacker was then arrested and a cell phone found
on his person was confiscated.

ForToo: Forensic Tools Against Illegal Use of the Internet HOME/2010/ISEC/AG/INT/002
www.fortoo-project.eu

D2: Implementation Report - 60 -

Figure 1: Map of communications made between suspects on the night of the incident [1]

The police speculated that the attack was orchestrated by an organized crime gang
and in order to prove their hypothesis, proceeded to examine the call detail records
(CDRs) of the attacker’s cell phone as well as those who called or were called by that
cell phone. This resulted in the graph, shown above.

Each node is a cell phone, the directed links indicate who initiated the call and the
numbers overlaying each link show the time that call was placed (but unfortunately
not the duration of the call). Please note that the last three digits of the displayed cell
phone numbers have been removed to protect the identity of the parties involved.

This graph conveys the extent of the communications that took place from 9 pm
till 3 am the night of the murder, but little else. For example it is very difficult to tell

[1] http://tvxs.gr/sites/default/files/article/2013/40/139778g-sxediagramma-tilefonimaton-2_0.jpg

ForToo: Forensic Tools Against Illegal Use of the Internet HOME/2010/ISEC/AG/INT/002
www.fortoo-project.eu

D2: Implementation Report - 61 -

which calls took place before the incident and may, therefore, indicate collusion
between the communicating parties.

We used our timeline analysis tool (TAT) to produce the graph shown below,
which arranges the same CDR data in a timeline. Each cell phone is a horizontal line
in the table and arrows connecting cell phones indicate calls. Here, too, the direction
of the arrow indicates who initialed the call. The green vertical line in the middle of
the image shows the approximate time of death to help the user differentiate between
calls that took place before the incident and those that occurred afterwards. This line
may be moved by the user in order to highlight a different time of reference.

The TAT tool expects its input data to be in the form of an Excel file and the order
of the telephone numbers on the y-axis depends on the ordering of the entries in the
spreadsheet. This allows for various orderings of the numbers (e.g. earliest call first).

Figure 2: Compressed timeline of calls.

The system also allows the user to zoom in on a subset of the time line in order to
be able to see the calls in greater detail. In addition, the user is able to define aliases
for cell phone numbers (e.g. place the name of the owner next to the cell phone
number).

By selecting a specific cell phone from the y-axis, we can highlight the calls made
from, or to, that cell phone (outgoing calls are marked in red, while incoming are
marked in blue).

ForToo: Forensic Tools Against Illegal Use of the Internet HOME/2010/ISEC/AG/INT/002
www.fortoo-project.eu

D2: Implementation Report - 62 -

Figure 3: Calls made by selected cell phone are highlighted.

To avoid clutter, we can hide calls unrelated to the number we are interested in.
We isolate the call records of specific cell phones by simply selecting the line
corresponding to that cell phone. In this case the other communications are removed
from the screen, while the list of numbers that were in direct communication with the
selected cell phone is displayed in a popup window (shown in figure 6 below).

Figure 4: Calls made by selected cell phone are shown exclusively.

ForToo: Forensic Tools Against Illegal Use of the Internet HOME/2010/ISEC/AG/INT/002
www.fortoo-project.eu

D2: Implementation Report - 63 -

Finally, we can display together call records of multiple cell phones. In this case,
calls made between numbers outside the selected group are not shown. In Figure 5
we have added name tags to three numbers and we have asked the system to display
only calls related to these numbers. We have also selected “true timeline” (x-axis
shows time in scale) versus “compressed timeline” (all calls are placed at an equal
distance from each other, regardless of how much time may have passed between the
placement of these calls) which was used in the earlier figures.

Figure 5: Group of three cell phones are displayed in “true timeline” mode. This mode may cause

clutter in cases where multiple calls are made within a short time interval (e.g. at 00:38:18).

Each of the selected numbers is allocated a colour (e.g. Alice is red, Bob is violet,
and John Doe is blue), so that calls initiated by Alice are shown as red arrows, and
John Doe’s initiated calls are shown as blue arrows. Notice that there are no violet
arrows because Bob did not initiate any calls during the monitored time interval.

ForToo: Forensic Tools Against Illegal Use of the Internet HOME/2010/ISEC/AG/INT/002
www.fortoo-project.eu

D2: Implementation Report - 64 -

Figure 6: The entire visualization window showing a zoomed-in view of all communications that

occurred between the selected handsets on the night of the incident.

The user may also zoom-in on specific time intervals so that busy periods can be
viewed in greater detail. In Figure 6 we see a screen dump of the entire visualisation
window of the TAT application with all the information available to the user.

Notice that in the window on the right hand side of the figure, the system displays
the numbers that called or were called by the selected cell phones.

6.2.1 Analysis

The system is still undergoing improvements, but it has already shown its power
by allowing undisclosed numbers to be associated with real persons. For example,
reading in the papers that, say, Bob was in frequent communication with John Doe
starting from before 10pm and then again after the incident till between 2:30 and 3
am, we can use the TAT system to zoom in on the specified times and identify the cell
phone numbers that are likely to correspond to Bob and John Doe.

In a similar manner we can proceed to unravel the remaining threads of the
communications that took place on the night of September 17th.

ForToo: Forensic Tools Against Illegal Use of the Internet HOME/2010/ISEC/AG/INT/002
www.fortoo-project.eu

D2: Implementation Report - 65 -

7 Visualisation Integration
This section addresses how new visualisations may be integrated into the DEViSE
architecture. It is intended as a technical specification to clarify how different
visualisation tools can exchange information.

7.1 Inter-Tool Information Exchange
The exchange of data from one tool to another makes use of three components:

• The C-DOC or Configuration Document
• The I-DOC or Information Document
• Interactive “objects” within an a visualisation tool

These components were introduced in work package 1; C-DOC is an XML file which
stores the configuration of a visualisation tool, I-DOC is an XML file which acts as the
transport mechanism for transferring data between tools (passed as a command line
argument). Objects are context sensitive areas programmed into an application. An
object represents one or more function types and holds one or more events. When
clicked the object will find compatible applications that can visualise the data it holds.

The purpose for having XML files passed from one tool to another is to remove any
association between tools, replacing all interactions with interoperable XML. In this
fashion, as long as a computer language has an XML parser implementation, tools
can be written in different programming languages and interact solely via the XML
interface.

The general process for invoking a tool has been implemented as follows.
Immediately after an object is clicked in an application, a number of steps are carried
out to find compatible applications. These steps are:

1. The application obtains other tools’ C-DOC’s. All C-DOC’s are stored in one
location (i.e. folder on a hard disk).

2. The application retrieves the entry within each C-DOC for the input other tools
can accept. The <input> tag within the C-DOC contains the function a tool can
carry out.

3. The application retrieves the quantity of input a tool can visualise (again, from
the <input> tag).

4. A comparison is made between the data types & quantity found in the tool
configuration with the same details retrieved from the object.

5. A menu is generated listing all tools matched by data type & quantity
(including, if applicable, the initial tool itself).

6. When a tool is selected from the menu, an I-DOC is created. This I-DOC
contains the names of functions and the unique identifier of each event. The I-
DOC file is passed to the selected tool as a command line argument.

7. The receiving tool parses the I-DOC and runs each function with the unique
identifier to retrieve information from the database, which it then uses to
create a visualisation.

ForToo: Forensic Tools Against Illegal Use of the Internet HOME/2010/ISEC/AG/INT/002
www.fortoo-project.eu

D2: Implementation Report - 66 -

8 Tool&and&Platform&Integration&

The forthcoming deliverable D3 will deal with the integration of the
aforementioned tools into meaningful use cases, where we will demonstrate how
useful they can be in real life circumstances. It is anticipated that at least one
demonstrator will be developed showcasing the linking of tools’ output with the
DEViSE platform. Those use cases will be validated by practitioners from our Police
partners prior to the formal release of the corresponding code via open source routes.
The exact format of dissemination of the code will be decided at a later stage (e.g. via
github).

ForToo: Forensic Tools Against Illegal Use of the Internet HOME/2010/ISEC/AG/INT/002
www.fortoo-project.eu

D2: Implementation Report - 67 -

9 Bibliography&

1. Anatomy of Facebook. https://www.facebook.com/notes/facebook-data-
team/anatomy-of-facebook/10150388519243859

2. D3.js – Data Driven Documents http://d3js.org

3. Department of Law, State of New Jersey. Melanie McGuire found guilty of murder
in 2004. http://www.nj.gov/oag/newsreleases07/pr20070423a.html

4. Facebook developers: Email permissions.
https://developers.facebook.com/docs/reference/login/email-permissions/

5. Facebook social plugins. https://developers.facebook.com/docs/plugins/

6. Forensic focus: Dropbox forensics.
http://www.forensicfocus.com/Content/pid=429/page=2/#database

7. Foursquare API Endpoints. https://developer.foursquare.com/docs/

8. Foursquare wrapper. https://github.com/mLewisLogic/foursquare

9. Google+ API. https://developers.google.com/+/api/

10. Google Developers - Google Maps JavaScript API v3. https://
developers.google.com/maps/documentation/javascript/

11. Google Geocoding API.
https://developers.google.com/maps/documentation/geocoding/

12. The guardian: NSA prism program taps in to user data ofapple, google and others.
http://www.guardian.co.uk/world/2013/jun/06/us-tech-giants-nsa-data

13. IACP center for social media, 2012 survey results.
http://www.iacpsocialmedia.org/Resources/Publications/2012SurveyResults.aspx

14. jQuery. http://jquery.com

15. List of searched keywords http://animalnewyork.com/2012/the-department-of-
homeland-security-is-searching-your-facebook-and-twitter-for-these-words/

16. PhantomJS: Headless WebKit with JavaScript API. http://phantomjs.org/

17. tweepy. https://github.com/tweepy/tweepy

18. Adu-Oppong, F., Gardiner, C. K., Kapadia, A., and Tsang, P. P. Social circles:
Tackling privacy in social networks. In symposium on Usable Privacy and Security
(SOUPS) (2008)

19. Al Mutawa, N., Baggili, I., and Marrington, A Forensic analysis of social networking
applications on mobile devices. Digital Investigation 9 (2012), S24–S33

20. Andriotis, P., Oikonomou, G., and Tryfonas, T. Forensic analysis of wireless
networking evidence of android smartphones. In Information Forensics and Security
(WIFS), 2012 IEEE International Workshop on (2012), IEEE, pp. 109–114

21. Balduzzi, M., Platzer, C., Holz, T., Kirda, E., Balzarotti, D., and Kruegel, C. Abusing
social networks for automated user profiling. In RAID (2010), pp. 422–441

ForToo: Forensic Tools Against Illegal Use of the Internet HOME/2010/ISEC/AG/INT/002
www.fortoo-project.eu

D2: Implementation Report - 68 -

22. Bugzilla. Bug 609361 - SVG takes ages to render. Is ok in other browsers, like Opera
or Safari https://bugzilla.mozilla.org/show_bug.cgi?id=609361

23. Bugzilla. Bug 791699 - Slow setting of attributes on SVG elements due to time spent
in region operations on this molecular dynamics simulation
https://bugzilla.mozilla.org/show_bug.cgi?id=791699

24. Chu, H.-C., Deng, D.-J., and Park, J. H. Live data mining concerning social
networking forensics based on a facebook session through aggregation of social data.
Selected Areas in Communications, IEEE Journal on 29, 7 (2011), 1368–1376

25. Correa, C., and Ma, K.-L. Visualizing Social Networks. Springer, 2011, ch. Chapter
11: pp. 307-326.

26. Craiger, J. P., Swauger, J., and Marberry, C. Digital evidence obfuscation: recovery
techniques. In Defense and Security (2005), International Society for Optics and
Photonics, pp. 587–594.

27. Facebook. Facebook Query Language (FQL) Reference
https://developers.facebook.com/docs/reference/fql/

28. Facebook. fbconsole. https://github.com/facebook/fbconsole

29. Facebook. Graph API https://developers.facebook.com/docs/reference/api/

30. Forbes. Solving a teen murder by following a trail of digital evidence
http://www.forbes.com/sites/kashmirhill/2011/11/03/solving-a-teen-murder-by-
following-a-trail-of-digital-evidence/

31. Garfinkel, S. L. Forensic feature extraction and cross-drive analysis. Digital
Investigation: The International Journal of Digital Forensics & Incident Response 3
(Sept. 2006), 71–81

32. Gross, R., and Acquisti, A. Information revelation and privacy in online social
networks. In Proceedings of the 2005 ACM workshop on Privacy in the electronic
society (New York, NY, USA, 2005), WPES ’05’, ACM, pp. 71–80

33. Hall, P. A., and Dowling, G. R. Approximate string matching. ACM Computing
Surveys (CSUR) 12, 4 (1980), 381–402

34. Heer, J., and Boyd, D. Vizster: Visualizing online social networks. In Proceedings of
the Proceedings of the 2005 IEEE Symposium on Information Visualization
(Washington, DC, USA, 2005), INFOVIS ’05’, IEEE Computer Society, pp. 5–

35. Huber, M., Mulazzani, M., Leithner, M., Schrittwieser, S., Wondracek, G., and
Weippl, E. Social snapshots: digital forensics for online social networks. In ACSAC
(2011), pp. 113–122.

36. Jin, L., Takabi, H., and Joshi, J. B. Towards active detection of dentity clone attacks
on online social networks. In Proceedings of the first ACM conference on Data and
application security and privacy (New York, NY, USA, 2011), CODASPY ’11’
ACM, pp. 27–38

37. Kontaxis, G., Polakis, I., Ioannidis, S., and Markatos, E. P. Detecting social network
profile cloning. In Pervasive Computing and Communications Workshops (PERCOM
Workshops), 2011 IEEE International Conference on (2011), IEEE, pp. 295–300.

38. Krishnamurthy, B., and Wills, C. E. On the leakage of personally identifiable
information via online social networks. In WOSN ’09: Proceedings of the 2nd ACM

ForToo: Forensic Tools Against Illegal Use of the Internet HOME/2010/ISEC/AG/INT/002
www.fortoo-project.eu

D2: Implementation Report - 69 -

workshop on Online social networks’ (New York, NY, USA, 2009), ACM, pp. 7–12

39. Krishnamurthy, B., and Wills, C. E. Leakage in Mobile Online Social Networks. In
Proceedings of the 3rd Workshop on Online Social Networks (WOSN 2010) (June
2010)

40. Mao, H., Shuai, X., and Kapadia, A. Loose tweets: an analysis of privacy leaks on
twitter. In Proceedings of the 10th annual ACM workshop on Privacy in the
electronic society (NewYork, NY, USA, 2011), WPES ’11’, ACM, pp. 1–12.

41. Mashable. Vancouver fans riot as canucks lose stanley cup.
http://mashable.com/2011/06/15/vancouver-hockey-riot/

42. Mulazzani, M., Huber, M., and Weippl, E. Social network forensics: Tapping the
data pool of social networks. In Eighth Annual IFIP WG 11.9 International
Conference on Digital Forensics (1 2012)

43. Navarro, G. A guided tour to approximate string matching ACM computing surveys
(CSUR) 33, 1 (2001), 31–88

44. Polakis, I., Kontaxis, G., Antonatos, S., Gessiou, E., Petsas, T., and Markatos, E. P.
Using social networks to harvest email addresses. In Proceedings of the 9th Annual
ACM Workshop on Privacy in the Electronic Society (WPES) (2010), ACM, pp. 11–
20.

45. Shen, Z., Ma, K.-L., and Eliassi-Rad, T. Visual analysis of large heterogeneous
social networks by semantic and structural abstraction. IEEE TRANSACTIONS ON
VISUALIZATION AND COMPUTER GRAPHICS 12, 6 (2006), 1427–1439

46. Tang, J., Sun, J., Wang, C., and Yang, Z. Social influence analysis in large-scale
networks. In Proceedings of the 15th ACM SIGKDD international conference on
Knowledge discovery and data mining (New York, NY, USA, 2009), KDD ’09’,
ACM, pp. 807–816

47. The Concord Consortium. Serious Performance Regression in Firefox 18 and newer.
http://blog.concord.org/serious-performance-regression-in-firefox-18-and-newer

48. Andriotis, P., Oikonomou, G., & Tryfonas, T. (2013). JPEG steganography detection
with Benford's Law. Digital Investigation.

49. Fu, D., Shi, Y. Q., & Su, W. (2007). A generalized Benford’s law for JPEG
coefficients and its applications in image forensics. SPIE Electronic Imaging:
Security, Steganography, and Watermarking of Multimedia Contents, San Jose, CA,
USA.

50. Schaefer, G., & Stich, M. (2003). UCID: an uncompressed color image database.
Electronic Imaging 2004, 472-480.

