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Agenda
1.30-1.40! Welcome and introductions

1.40-3.10 ! Session 1. “Basic authentication methods, vulnerabilities 
and user issues”

3.10-3.25! Break

3.25-4.10! Session 2. “Pattern Screen-Lock Methods, Security vs. 
Usability and Soft Side Channel Attacks”

4.10-4.55! Session 3. Practical session on the design of a useable 
lock mechanism for a mobile device

4.55-5.00! Wrap up and close
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Session outline

• Password schemes and attacks

• Tokens and two-factor authentication

• Biometrics and design challenges

• Authentication controls and their effective 
integration with an information system
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Authentication of users

• A computer bases much of its protection on 
knowing who its user is - OSs need to make 
‘safe’ assumptions about the users of their 
resources

- as in real life, e.g. providing an ID to buy alcohol

• Entity authentication - the process of 
verifying the identity claimed by some system 
entity

- this can be done in a number of ways
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Authentication of users 
(cont’d)

• Using something the user knows - 
codeword

• Using something the user has - card

• Using something the user is - fingerprint

• Using something the user does - typing rate
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Password-based 
authentication

• The most popular means of authentication - we should 
all have extensive experience of use

• Mutually agreed upon codewords assumed to be known 
only by the user and the system

- can be user or system set

• Relatively cheap to implement mechanism, comes with 
almost every OS, software application, web site etc.

• The user provides an identifier and a password and the 
system verifies the former and compares the latter to a 
previously known form
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Use of passwords

• Password use suffers from various issues, 
e.g.:

- Additional burden in use of resources

- They can be lost or forgotten

- Need to be maintained in secrecy

- Need secure bootstraping/initialisation
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Password implementation

• Retaining passwords happens essentially through a 
minimum two-column system table associating IDs 
with codewords

• Storing user password lists in clear text is not 
historically unheard of

- there’s an obvious vulnerability there!

• Thus at least the password column was usually retained 
in encrypted format

- the system decrypts and compares the provided password - 
not ideal (what is the vulnerability here?)
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Password implementation 
(cont’d)

• A safer approach uses one-way cryptographic hash 
functions

• A one-way function is a function that is relatively easy to 
compute but significantly harder to undo or reverse. That 
is, given x it is easy to compute f(x), but given f(x) it is 
hard to compute x

• There can still be issues

- users using the same password: f(x) and f(x’) will match!

- user uses the same password across systems
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Salt value and traditional 
implementation

• Originally a 12-bit number derived from process ID 
and time of password creation

• Original password length restrictions of 8 chars

• Creates a unique entry per password and relieves the 
pressure of protecting the entire file

- /etc/passwd is world-readable and shell etc. information 
can be read

- still vulnerable to a number of attacks though, esp. if weak 
passwords used - shadow file use /etc/shadow accessible 
only by root
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Password file

...

UID    Salt    Hash

UID

hash function

Salt

password

comparison

Password verification

Password file

hash function

Salt {process ID, time}

password

...

UID    Salt    Hash

Password generation
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Modern implementation on 
UNIX variants

• Hash based on MD5 hash algorithm

• Salt of up to 48 bits

• No limitations on password length

• 128-bit hash value



General attacks on 
passwords

• Despite the improved security of the previous 
implementation scheme there is plenty of 
scope for successful attacks; an attacker may

- Try all possible passwords;

- Try frequently used passwords;

- Try passwords likely for the user;

- Search for a system list of passwords;

- Obtain it from the user directly.
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Exhaustive search attacks

• The size of the password space is at least |A|n, where n is 
the minimal password length and |A| the size of the char set 
used for password generation

• Assume passwords can be created from 26 chars A-Z of any 
length 1-8; there are 261+262+...+268=269-1≈5*1012

• 1 passwd/msec gives around 150 years of effort; but 1 
passwd/μsec - 2 months

• Assuming that all possible passwords were evenly distributed 
and we search to recover a single one, not all, then we can 
expect some success within half the password space
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More bad news
• People need to remember their passwords; they may also 

need to use far too many (short passwords)

- There are only 261+262+263 = 18,278 possible passwords, i.e. 
18.278sec to go through all; length of 4 or 5 would be 8min and 
3.5hr respectively

• We assumed that passwords are generated using chars that 
are statistically independent - e.g. vwtxb is equally probable 
to notes (memorable passwords)

- People use passwords meaningful to them, even if they appear 
strong; studies show that people use names, car number plates 
etc. - trying an entire dictionary of 80k words under our 
assumptions would take around 80sec
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Password guessing
• Based on numerous studies of what sort of passwords we tend 

to use, how often we change them etc. security testers have 
identified reasonable ways for reducing the complexity of 
password recovery - so have hackers

- no password

- same as UID

- is or derived from the user’s name (or pet, or car make and model etc.)

- common word list, plus common names and patterns

- various dictionaries - not only English!

- capitalisations and meaningful substitutions e.g. 3 for e, 0 for o etc.

- brute force, full char set
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Space for time tradeoffs
• An alternative to building up dictionaries of possible 

passwords and using each one to derive hash values combined 
with each salt etc., is to pre-compute potential hash values

• Trading off space for time is an approach where the attacker 
generates a large dictionary of possible passwords and for 
each one the hash values associated with each possible salt 
value are generated and stored

- Result: huge table of hash values (rainbow table)

- Researchers demonstrated a 99.9% crack rate of all alphanumeric 
Windows password hashes using 1.4GB of data

- Countermeasure: large salt value and large hash length
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A historical example: 
Windows LM hash

• Users’ passwords were restricted to 14 ASCII chars 
- 9514 (about 292)

• Input was converted to all uppercase

• Input was broken up to two 7-byte segments and 
hashed separately - NO salting

• <8 chars passwords were padded with 
0xAAD3B435B51404EE 

• See http://ophcrack.sourceforge.net for 
implementation details

20
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(Some) good password 
control practices

• Limiting login attempts; lockdown or timeout after 
each incident

• Password ageing; expiry date with or without memory 
of previous password hashes to avoid password reuse, 
within a reasonable time frame, e.g. last 5 used

• Limiting the amount of ‘left-over’, potentially useful to 
attackers, information; e.g. name of machine, previous 
logged username on prompt

• Automated password generation - debatable
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(Some) good password 
control practices (cont’d)

• Periodic password auditing

• Providing users with information such as when 
last logged in etc.

• User education - generate strong passwords, 
avoid writing them down, sharing them, using the 
same across systems, etc. etc.

- Understanding the user perspective and psychology is 
important, e.g. requesting password changes before 
holiday periods will probably lead to problems
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Vulnerabilities of 
password schemes

• Obviously storing or sending passwords in 
the clear is not a good practice...

- but has historically happened (e.g. the telnet 
protocol)

• ... but neither is exchanging the 
corresponding password hashes.

• All vulnerable to eavesdropping and offline 
guessing attacks.
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One-time authentication 
(challenge-response)

• A one-time password changes every time is used; instead 
of using a fixed phrase, the system uses a fixed 
mathematical function, e.g.

- f(x)= x+1: system provides x, user returns x+1; f(x) = px: px 

is x-th prime etc.

- f(x) = r(x): x is used by a random number generator by both 
and then comparing results

- etc. etc.

• This may be obviously onerous for a user, but the 
intension here is to be generated by devices (tokens)
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Security protocols
• A password scheme is in essence a security protocol

• Analysing properties of password schemes as protocols may reveal a 
lot of security issues

• Example notation (#1) - e.g. for a token to access and open a garage 
door

T → G : T, {T,N}KT

T - token (and token’s ID)

G - garage door access mechanism

N - number used once (nonce)

KT - T’s encryption key

25



Challenge-response

• Assume we have an engine controller E and a 
car key with a transponder T; E sends an n-
bit challenge to T using short range radio. In a 
simple auth. scheme the car key can simply 
compute a response by encrypting the 
challenge as below:

E → T: N

T → E: {T,N}K
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Vulnerability analysis of a simple 
challenge-response scheme

Consider this simple password-based challenge-response protocol run 
between a user A and a server S. PA denotes A’s password, n is a random 
nonce generated by the server, and h is a known cryptographic hash 
function. The notation (#2) eK(i) means i is encrypted under key K using 
a known encryption algorithm.

1. S → A: ePA(n)

2. A → S: ePA(h(n)) 

If the attacker intercepts the two messages and offline guesses passwords 
to use as potential decryption keys, by decrypting both messages one gets 
two values x and y. If for some candidate password happens to be y = 
h(x), then the guessed password is likely to be correct.
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Man in the middle attacks

• Applies to the on-line challenge-response scheme: say 
here for simplicity, simple encryption under one’s key

• A malicious entity spoofs (i.e. assumes the identity of) a 
legitimate server and simultaneously opens a 
connection to a server pretending to be a user

- Retrieves the challenge N from the server and passes it to the 
user

- Retrieves the response {N}K from the user and passes it to 
the server

- Hijacks the authenticated session
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Multiple factor 
authentication

• Additional system information may be used to 
increase confidence of successful user ID and 
verification

- e.g. contextual information on where the user connects 
from, what time etc. or transaction-related data

• An additional form of authentication may be required 
too

- e.g. presenting a token, as in the use of cash machines

- the combination of something the user knows/has is fairly 
popular
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Sample two-factor 
authentication scheme

• Assume a bank web server S, a user U, a password 
generator device P and the user’s PIN for it (PIN).

• A possible protocol could be

S → U: N

U → P: N,PIN

P → U: {N,PIN}K

U → S: {N,PIN}K
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Token-based authentication

• Popular devices that facilitate 
authentication can be cards (memory or 
smart) and USB dongles

• Memory cards only hold data in magnetic 
stripes

• USB dongles is a cheaper alternative to the 
smartcard and can hold authentication 
credentials for OSs to verify etc.
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Smartcards

• Include an embedded microprocessor

• Categorised in three groups, based on their 
implementation of an authentication protocol

- Static - similar to a memory card

- Dynamic password generator - the token generates 
a unique password periodically; synchronisation is 
required between token and authentication server

- Challenge-response

32



Smartcards (cont’d)
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MCPU

EEPROM

Crypto 
processor

The chip is embedded in a plastic card, the 
dimensions of which conform to ISO 7816-2.

85.6mm
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Smartcards (cont’d)
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Activate sequence with reset

Series of commands

ATR

PTS request

PTS req?PTS issued?

ATR - answer to reset
PTS - Protocol type selection

yes

PTS responseyes

no

no



Single sign on
• Multiple authentication requests during a user’s interaction 

experience with a computer can be cumbersome - users may 
note passwords down, use the same password across systems 
etc.

• Some systems implement the concept of single-sign on, where 
the system retains authentication credentials for the user and 
provides them to subsequent systems or processes as needed

- Issue: protecting the credentials in storage and during hand-over; web 
services may achieve it by using cookies or storing them on-line (MS 
Passport); OSs via encrypted local storage (OS X’s Keychain Access 
app) etc.

- MyBristol implements some sort of SSO
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Biometric 
authentication

• Schemes that use unique physical characteristics to 
perform two functions

- 1:n identification, i.e. match a person to a database of n people

- 1:1 verification, i.e. match a given user to their known 
credentials (e.g. in a token)

• Physical characteristics can be

- ‘hard’, e.g. recognition based on hand geometry, fingerprints, 
face or iris features, or

- dynamic, such as rate of keystrokes - which has been proved 
effective in distinguishing users
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Fingerprint recognition

• The pattern of the ridges of the fingerprint 
serves as a unique characteristic

• Samples are collected from users and are stored 
in analogue or digital form as templates for 
reference

- info re shape of curves, locations of bifurcations, 
positions where ridges end etc. (called minutiae)

• For greater accuracy, templates from more than 
one finger can be obtained
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Fingerprint recognition 
(cont’d)

• Registering users’ features is called enrolment; it is 
important to note the error rate (failure to enrol, FER) of this 
process, as user registration may fail due to dirty or worn out 
fingerprints, reader errors etc.

• When in operation, the system obtains samples from users 
and tries to match them to known templates; if a match is 
found a successful authentication has taken place

• The nature of the match is however always within a range - no 
binary decision as in the case of password use is possible here

- e.g. reading error due to faulty scanner, dirty surface or fingers, or 
otherwise worn-out fingertips etc.
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Biometrics effectiveness

• Due to many reasons there can be

- false positive identifications (security breach)

- false negatives (denial of service)

• Various metrics can help us to design and set right levels of 
acceptance or rejection rates based on the performance of 
the technology and the security requirements

- False acceptance rate (FAR) = # false positive identifications/total 
identifications

- False rejection rate (FRR) = # false negative identifications/total 
identifications
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Biometrics effectiveness 
(cont’d)
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Receiver operator characteristics curves

http://bit.ly/R8cdh3
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People issues with use 
of biometrics

41

• Perception of criminalisation - 
fingerprinting

• Physically intrusive - e.g. iris scanners

• Psychologically intrusive - e.g. keystroke 
monitoring



Recap

• Password schemes and attacks

• Tokens and two-factor authentication

• Biometrics and design challenges

• Authentication controls and their effective 
integration with an information system
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Sources
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• D Gollmann Computer Security 3rd Ed. Wiley, 2010 
ISBN: 978-0470862933; pp. 49-64 (whole of ch. 4)

• Pfleeger and Pfleeger Security in Computing 4/E 
Prentice Hall, 2006 ISBN: 978-0132390774; pp. 219-236 
(section 4.5)

• R Anderson Security Engineering 2nd Ed. John Wiley & 
Sons, 2008 ISBN: 978-0470068526; pp. 17-62 (whole of 
ch. 2)

• B Schneier, The Psychology of Security, http://
www.schneier.com/essay-155.html, January 21, 2008
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Session&Outline

• Graphical&password&authen5ca5on
– Android&pa=ern&lock&mechanism

• Physical&a=acks
– Thermal&camera&to&detect&swiped&pa=ern&heat&emission&
– Op5cal&camera,&microscope&to&detect&swiped&pa=ern&oily&
residues&(smudges)

• Pa=ern>seWng&research:&security&vs.&usability&
percep5ons&of&android&users
– Web>based&survey&results
– Physical&side>channel&a=ack&valida5on

• Further&work
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Authen5ca5on&with&graphical&passwords

• Exis%ng(a*acks(
concentrate(on
– ‘hot&spot’&iden5fica5on&
(areas&of&used&image&
concentra5on)

– Dic5onary&style&a=acks&
taking&into&account&
‘password’&length,&
number&of&components,&
symmetry
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Authen5ca5on&with&graphical&passwords&
(cont’d)

• Studies(detected(some(
cogni%ve(biase(in(
choosing(graphical(
passwords
– as&in&e.g.&the&Passfaces&
system,&with&a=rac5on&
and&race&preference

– 10%&of&male&passwords&
were&guessable&in&two$
a&empts!
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Mo5va5on:&Android’s&popularity&and&&
pa=ern&lock&mechanism&use
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The&Android&Pa=ern&Lock

• Min(4(and(Max(9(nodes(
to(create(a(pa*ern.

• Nodes(can(be(visited(
only(once.

• Total(number(of(possible(
pa*erns(is(389,112.
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‘Side&channel’&a=acks&on&pa=ern&locks

• A=acks&based&on&informa5on&gained&from&the&
physical&implementa5on&of&a&security&scheme&
are&called&side&channel&a=acks
– E.g.(exis%ng(thermal(a*acks(on(ATMs
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Thermal&emission&detec5on

?
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Oily&residue&detec5on

• With(a(hi(res(camera
• With(a(microscope

Detec5ng&direc5onality

Figuring&out&the&swiped&pa=ern

Despite$oleophobic$coa3ng!
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Survey&Objec5ves

• Understand&how&percep5ons&of&security&or&
usability&affect&the&effec5veness&of&the&
mechanism

• Detect&biases&in&the&seWng&of&the&pa=erns&as&
graphical&passwords

• Facilitate&the&recovery&of&locking&pa=erns&for&
forensics&and&intelligence&purposes
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Survey&instrument

• Done&on>line
–Webpage(was(live(at(h*p://pa*ernsurvey.biz/(

• Key&ques5ons&(pilot)&included
1. Demographics((gender,(age)
2. Experience(with(smartphones
3. Use(of(pa*erns(or(not
4. Asked(to(set(a(secure(pa*ern
5. Asked(to(set(a(usable(pa*ern
6. Preference(of(pa*ern(between(those(and(why
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Data&Analysis

• Calculated&average&pa=ern&lengths
• Calculated&average&number&of&direc5on&changes
• Computed&entropy&per&node&(frequency&metric)
– i.e.&probability&of&being&selected&as&start&or&end&point&or&
monogram&selected&in&the&pa=ern

• Computed&condi5onal&entropy&of&n>grams&
(Shannon’s&formula)
– i.e.&most&frequently&used&bi>grams,&tri>grams,&four>grams&
(as&sub>pa=erns&of&swiped&paths)
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Table 1: Average pattern lengths and standard deviations.

Group
Average Length Standard Deviation
Secure Easy Secure Easy

Females 6.16 5.94 1.87 1.75
Males 6.89 6.32 1.91 1.94
Total 6.64 6.19 1.92 1.88

Table 2: Average number of direction changes (all users).

Average Changes Standard Deviation
Secure Easy Secure Easy
3.57 2.74 1.65 1.59

highest risk that would compromise a lock is shoulder surf-
ing. Smudges left on the screen and cameras in the room
have the same rating of being the highest risk with 15.97%,
yet the former has been selected more times as the second
highest risk compared to the latter, rendering it the second
highest risk after the shoulder surfing. Furthermore, 57.64%
of the participants thought the secure pattern they entered
is usable in everyday life, while 42.36% did not. Finally,
35.42% of the participants thought that the easy pattern
they entered was secure enough, while 64.58% did not.

3.3 Secure Pattern Analysis

3.3.1 Pattern Length and Direction Changes

As part of our analysis, we calculated the average pattern
length of the secure and easy patterns (and their standard
deviations). The average length calculated by summing the
number of dots used and dividing that value to the number of
participants. While the average pattern length for a secure
pattern drawn by a male participant is 6.88 dots, females
averaged 6.16 dots. The same situation can be observed in
easy patterns: the average among males is 6.32 dots while
among females it is 5.94 dots. The total average lengths
for secure and easy patterns are 6.64 and 6.19 respectively
(Table 1). Results indicate that there may be a di↵erence
in perception of secure pattern length and direction between
male and female participants. As part of our future work, we
are planning to test the statistical significance of this claim,
using a larger number of participants. Another indication
of a pattern’s security e�ciency is the number of direction
changes made per pattern (Table 2). We assume that for
humans, a direction change is a more di�cult move than
following a direct line. Consequently, we deduce that when
a user makes more direction changes in a pattern, then it
gets more complex, hence more secure. The average num-
ber of direction changes made in a secure pattern is 3.57
and the average number of direction changes made in an
easy pattern is 2.74. This finding demonstrates that secure
patterns have more direction changes with respect to their
lengths, rendering them more complex.

3.3.2 Entropy

In the following sections of survey data analysis, we cal-
culated the Shannon’s entropy while studying sub-patterns,
start and end points for the secure patterns. For mono-
grams, start and end points, entropy is calculated based on
the probability of point X being selected in the pattern or
being the start (or end) point. For N-grams, we calculated

conditional entropy, whereby the probability of point X ap-
pearing N

th in the pattern is dependent on which N-1 points
have been used in the pattern so far.
With that in mind, for conditional entropy calculations

(FN : N-gram entropy), we used Shannon’s formula [9]:

FN = �
X

i,j

p(bi, j) log2 p(bi, j) +
X

i

p(bi) log2 p(bi) (1)

in which bi is an (N-1)-gram (a pattern that consists of N-1
nodes), j is an arbitrary node (following b1) that has not
yet been chosen and p(bi, j) is the probability of the N-gram
bi, j. Note that in the case of sub-patterns, we consider
p(bi, j) as p(bi||j), where || stands for concatenation.1 For
instance, if the bigram is bi = “01” and j = “2”, then

p(bi, j) = p(“012”) =
# of occurrences of trigram “012”
sum of occurrences of all trigrams

3.3.3 Start and End Points

An interesting observation from the survey is the way par-
ticipants preferred to start their secure patterns (Figure 1a).
More than half of them (52.08%) started their secure pat-
terns from the top left node. The entropy of the start points
is 2.35 bits compared to a maximum of log2 9= 3.17 bits, for
which all the dots must have the same probability. This im-
poses heavy bias and makes the first dot highly predictable.
It is important to note that the survey did not examine
whether the user is right-handed, left-handed or ambidex-
trous (we will examine that in subsequent iterations of the
survey). Additionally, the survey could be filled either by
using a mobile device or a computer, which means partici-
pants might have used a mouse to draw the pattern. Nev-
ertheless, participants consistently chose the top left dot as
the starting point. A reason for this clustering can be linked
to participants’ geographical positions. Most of the entries
in our pilot run originate from across Europe and the United
States. Most of these countries’ native alphabets consist of
Latin characters and consequently, their writing starts from
the top left corner and ends in the bottom right. In addi-
tion, the survey’s language is English, which may make the
participants think in Latin language style even if they have
a non-Latin based native alphabet. As a result, they may
be inclined to start from the top left, because this looks like
a more natural starting point. The collection of data from
participants that have top-to-bottom or right-to-left native
languages would provide interesting results in the future.
We then checked the ending dots for secure patterns. Even

though there was no single dot on which most participants
preferred to end their secure pattern, the bottom right was
the most selected node with 20.83% (Figure 1b). The en-
tropy calculated is 3.00 bits for the probabilities of end
points. The ending dots were mostly focused on right and
bottom. From this observation we deduce that the most fre-
quent paths before the ending node can be found between
the top right and the bottom right dot. As expected, these
results also conform to the assumption about the Latin al-
phabet made on the analysis of start points.

3.3.4 Sub-patterns Analysis

One of the main objectives of the current work was to
investigate the possibility to find reccurring sub-patterns

1Android’s screen lock pattern nodes are represented with
numbers starting with 0 from the top left node.



Survey&results

• 144&unique&par5cipants
• Gender:&Male&66%,&Female&34%
• Age:&18:29$81%,&30:49$15%
• 92%&own&a&smartphone&of&which&40%&use&Android
• Less&than&half&(47%)&use&any&type&of&lock,&primarily&
to
– Protect&personal&data&(secrecy)
– Prevent&fiddling&(integrity)

• …
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Survey&results&(cont’d)

start&points finish&points monograms

bi>grams tri>grams four>grams 14



Survey&results&(cont’d)
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Table 1: Average pattern lengths and standard deviations.

Group
Average Length Standard Deviation
Secure Easy Secure Easy

Females 6.16 5.94 1.87 1.75
Males 6.89 6.32 1.91 1.94
Total 6.64 6.19 1.92 1.88

Table 2: Average number of direction changes (all users).

Average Changes Standard Deviation
Secure Easy Secure Easy
3.57 2.74 1.65 1.59

highest risk that would compromise a lock is shoulder surf-
ing. Smudges left on the screen and cameras in the room
have the same rating of being the highest risk with 15.97%,
yet the former has been selected more times as the second
highest risk compared to the latter, rendering it the second
highest risk after the shoulder surfing. Furthermore, 57.64%
of the participants thought the secure pattern they entered
is usable in everyday life, while 42.36% did not. Finally,
35.42% of the participants thought that the easy pattern
they entered was secure enough, while 64.58% did not.

3.3 Secure Pattern Analysis

3.3.1 Pattern Length and Direction Changes

As part of our analysis, we calculated the average pattern
length of the secure and easy patterns (and their standard
deviations). The average length calculated by summing the
number of dots used and dividing that value to the number of
participants. While the average pattern length for a secure
pattern drawn by a male participant is 6.88 dots, females
averaged 6.16 dots. The same situation can be observed in
easy patterns: the average among males is 6.32 dots while
among females it is 5.94 dots. The total average lengths
for secure and easy patterns are 6.64 and 6.19 respectively
(Table 1). Results indicate that there may be a di↵erence
in perception of secure pattern length and direction between
male and female participants. As part of our future work, we
are planning to test the statistical significance of this claim,
using a larger number of participants. Another indication
of a pattern’s security e�ciency is the number of direction
changes made per pattern (Table 2). We assume that for
humans, a direction change is a more di�cult move than
following a direct line. Consequently, we deduce that when
a user makes more direction changes in a pattern, then it
gets more complex, hence more secure. The average num-
ber of direction changes made in a secure pattern is 3.57
and the average number of direction changes made in an
easy pattern is 2.74. This finding demonstrates that secure
patterns have more direction changes with respect to their
lengths, rendering them more complex.

3.3.2 Entropy

In the following sections of survey data analysis, we cal-
culated the Shannon’s entropy while studying sub-patterns,
start and end points for the secure patterns. For mono-
grams, start and end points, entropy is calculated based on
the probability of point X being selected in the pattern or
being the start (or end) point. For N-grams, we calculated

conditional entropy, whereby the probability of point X ap-
pearing N

th in the pattern is dependent on which N-1 points
have been used in the pattern so far.
With that in mind, for conditional entropy calculations

(FN : N-gram entropy), we used Shannon’s formula [9]:

FN = �
X

i,j

p(bi, j) log2 p(bi, j) +
X

i

p(bi) log2 p(bi) (1)

in which bi is an (N-1)-gram (a pattern that consists of N-1
nodes), j is an arbitrary node (following b1) that has not
yet been chosen and p(bi, j) is the probability of the N-gram
bi, j. Note that in the case of sub-patterns, we consider
p(bi, j) as p(bi||j), where || stands for concatenation.1 For
instance, if the bigram is bi = “01” and j = “2”, then

p(bi, j) = p(“012”) =
# of occurrences of trigram “012”
sum of occurrences of all trigrams

3.3.3 Start and End Points

An interesting observation from the survey is the way par-
ticipants preferred to start their secure patterns (Figure 1a).
More than half of them (52.08%) started their secure pat-
terns from the top left node. The entropy of the start points
is 2.35 bits compared to a maximum of log2 9= 3.17 bits, for
which all the dots must have the same probability. This im-
poses heavy bias and makes the first dot highly predictable.
It is important to note that the survey did not examine
whether the user is right-handed, left-handed or ambidex-
trous (we will examine that in subsequent iterations of the
survey). Additionally, the survey could be filled either by
using a mobile device or a computer, which means partici-
pants might have used a mouse to draw the pattern. Nev-
ertheless, participants consistently chose the top left dot as
the starting point. A reason for this clustering can be linked
to participants’ geographical positions. Most of the entries
in our pilot run originate from across Europe and the United
States. Most of these countries’ native alphabets consist of
Latin characters and consequently, their writing starts from
the top left corner and ends in the bottom right. In addi-
tion, the survey’s language is English, which may make the
participants think in Latin language style even if they have
a non-Latin based native alphabet. As a result, they may
be inclined to start from the top left, because this looks like
a more natural starting point. The collection of data from
participants that have top-to-bottom or right-to-left native
languages would provide interesting results in the future.
We then checked the ending dots for secure patterns. Even

though there was no single dot on which most participants
preferred to end their secure pattern, the bottom right was
the most selected node with 20.83% (Figure 1b). The en-
tropy calculated is 3.00 bits for the probabilities of end
points. The ending dots were mostly focused on right and
bottom. From this observation we deduce that the most fre-
quent paths before the ending node can be found between
the top right and the bottom right dot. As expected, these
results also conform to the assumption about the Latin al-
phabet made on the analysis of start points.

3.3.4 Sub-patterns Analysis

One of the main objectives of the current work was to
investigate the possibility to find reccurring sub-patterns

1Android’s screen lock pattern nodes are represented with
numbers starting with 0 from the top left node.

Table 1: Average pattern lengths and standard deviations.

Group
Average Length Standard Deviation
Secure Easy Secure Easy

Females 6.16 5.94 1.87 1.75
Males 6.89 6.32 1.91 1.94
Total 6.64 6.19 1.92 1.88

Table 2: Average number of direction changes (all users).

Average Changes Standard Deviation
Secure Easy Secure Easy
3.57 2.74 1.65 1.59
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lengths, rendering them more complex.
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start and end points for the secure patterns. For mono-
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the probability of point X being selected in the pattern or
being the start (or end) point. For N-grams, we calculated
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More than half of them (52.08%) started their secure pat-
terns from the top left node. The entropy of the start points
is 2.35 bits compared to a maximum of log2 9= 3.17 bits, for
which all the dots must have the same probability. This im-
poses heavy bias and makes the first dot highly predictable.
It is important to note that the survey did not examine
whether the user is right-handed, left-handed or ambidex-
trous (we will examine that in subsequent iterations of the
survey). Additionally, the survey could be filled either by
using a mobile device or a computer, which means partici-
pants might have used a mouse to draw the pattern. Nev-
ertheless, participants consistently chose the top left dot as
the starting point. A reason for this clustering can be linked
to participants’ geographical positions. Most of the entries
in our pilot run originate from across Europe and the United
States. Most of these countries’ native alphabets consist of
Latin characters and consequently, their writing starts from
the top left corner and ends in the bottom right. In addi-
tion, the survey’s language is English, which may make the
participants think in Latin language style even if they have
a non-Latin based native alphabet. As a result, they may
be inclined to start from the top left, because this looks like
a more natural starting point. The collection of data from
participants that have top-to-bottom or right-to-left native
languages would provide interesting results in the future.
We then checked the ending dots for secure patterns. Even

though there was no single dot on which most participants
preferred to end their secure pattern, the bottom right was
the most selected node with 20.83% (Figure 1b). The en-
tropy calculated is 3.00 bits for the probabilities of end
points. The ending dots were mostly focused on right and
bottom. From this observation we deduce that the most fre-
quent paths before the ending node can be found between
the top right and the bottom right dot. As expected, these
results also conform to the assumption about the Latin al-
phabet made on the analysis of start points.

3.3.4 Sub-patterns Analysis

One of the main objectives of the current work was to
investigate the possibility to find reccurring sub-patterns
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(a) Start points (b) End points (c) Monograms

Figure 1: Node usage (radius depicts frequency).

within the responses (focused on secure patterns). Extract-
ing these sub-patterns would allow an attacker to guess a
partially retrieved pattern’s missing parts easier. In other
words, an attacker can incorporate the physical attacks with
the behavioural attacks to fully retrieve the pattern. The
first step of our sub-pattern analysis involves monograms.
We estimated the frequency of appearance of each dot to
explore the existence of any particular nodes that are fre-
quently chosen (Figure 1c). The result depicts that there is
no significant bias towards any of the dots; they are more
or less equally used in patterns, hence monogram entropy
is 3.16 bits. We then looked for bigrams, a sub-pattern
consisting of two dots. Since bigrams and other longer n-
grams create a path, the directionality of the path is taken
into account during analysis. There have been some bi-
grams that occurred especially frequently in patterns col-
lected. In Fig. 2a, path width depicts the frequency of that
particular bigram. In this case, the thickest path represents
that 32.64% of the participants drew that bigram, while the
thinnest represents 23.61%. Using Shannon’s entropy, bi-
gram entropy is calculated as 5.47 - 3.16 = 2.31 bits. The
maximum entropy for the bigrams is log2 72 = 6.17bits. Out
of 72 possible combinations 64, of them were drawn at least
by one participant. Continuing with trigrams, the analy-
sis shows that 18.75% of the participants drew a path from
the top left dot to top right dot at one point of their pat-
terns. The thinnest path in Figure 2b represents 14.58% of
the participants. The trigram entropy is 6.99 - 5.47 = 1.32
bits. Maximum trigram entropy is log2 504 = 8.98bits. Out
of 504 possible combinations, 203 were drawn at least by
one participant. Finally, we conducted a four-gram analy-
sis. Three four-grams stood out of the rest with two of them
being drawn by 9.02% of the participants and the other be-
ing drawn by 7.64% (Figure 2c). Thus, it is easy to spot a
trend towards left to right and top to bottom in these sub-
patterns, which contributes to the assumptions made on the
psychological behaviour the participants display. The four-
gram entropy is 7.75 - 6.99 = 0.76 bits. Maximum fourgram
entropy is log2 3024 = 11.56bits.

4. EVALUATION OF THE RESULTS
Our next step was to integrate our physical experiments

and survey findings to propose a scheme, which could in-
crease the success of such a combination of ‘soft’ and ‘hard’
side-channel attack on lock patterns. A common physical at-
tack using an e�cient optical camera combined with a psy-
chological attack utilising the results of our survey should
reduce the number of possible combinations and make pat-
tern retrieval more e�cient.

(a) Bigrams (b) Trigrams (c) Fourgrams

Figure 2: Most frequently drawn paths (‘secure’ patterns).

Table 3: Recovery of features.

Optical Attack Number Percentage
0 - 49% of pattern 5/22 22.73%
50 - 99% of pattern 5/22 22.73%
100% of pattern 12/22 54.54%
Total Recovery 18/22 81.82%

Phychological Number Percentage
Start point 18/22 81.82%
End point 11/22 50.00%
Bigrams 12/22 54.54%
Trigrams 7/22 31.81%
Fourgrams 4/22 18.18%

Direction (C) 14/22 63.63%

Total Retrieval 20/22 90.9%

To evaluate our proposed attack scheme we conducted a
new experiment and derived data from a new set of 22 par-
ticipants, which were not among those who took part on the
web-survey. 15 of them (68.2%) were males and 7 (31.8%)
females. 86.4% were aged between 21-30 and the age of the
rest was 31-40 years old. The participants came from Eu-
rope (59.1%), Asia (31.8%) and America (9.1%). The exper-
iment took place at a laboratory. They were asked to think
of a secure pattern that they would probably use on their
smartphones and then apply it on a real device. We copied
and drew their patterns on paper and took photographs of
the smartphone screen for further analysis. We marked the
drawings with serial numbers before taking the photographs
to ensure anonymity. The scenario we investigated assumes
light usage of the phone after the pattern was entered, thus,
before the photograph was taken we rubbed the screen gen-
tly on a cotton surface. We used an HTC Desire smartphone
and a Nikon D40x DSLR camera for this experiment.
During the analysis of our data we investigated the corre-

lation between the behavioural trends described in section
3 and smudges left on the screen. We used the following
sequence. First, we set the reference standards for this ex-
periment. The presented data in Figure 1 show that the 4
most preferred start points are the corners of the screen. In
addition, the 4 most visited end points are those located at
the right hand side and also the bottom left node. Finally,
we took into account the most preferred N-grams (Figure
2). At the first step of the investigation the nodes and the
edges of each pattern were recovered by scholastically ana-
lyzing the photograph of the given schema (optical). Then,
we compared the findings of the former examination with our
reference standards by looking at the drawing we had made
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Practical Session Brief
Objective:

• Given what you now know about potential attacks on the pattern lock 
mechanism, devise a graphical method for authenticating a user to a 
mobile device that would be easy to use and perceivably secure

Requirements:

• Work in a group of four (or two groups of three if applicable)

• Use rich pictures, story-boarding, UML, GUI sketches, simple conceptual 
diagrams or whatever else method you are familiar with for capturing 
requirements

• Demonstrate explicitly where and how you take into account specific 
usability and security concerns

• You may refer to Andriotis et al. and Il Shin et al.


