
ASIST: Architectural Support for Instruction Set
Randomization

Antonis Papadogiannakis, Laertis Loutsis, Vassilis Papaefstathiou, Sotiris Ioannidis
Institute of Computer Science, Foundation for Research and Technology – Hellas

{papadog, laertis, papaef, sotiris}@ics.forth.gr

ABSTRACT

Code injection attacks continue to pose a threat to today’s comput-
ing systems, as they exploit software vulnerabilities to inject and
execute arbitrary, malicious code. Instruction Set Randomization
(ISR) is able to protect a system against remote machine code in-
jection attacks by randomizing the instruction set of each process.
This way, the attacker will inject invalid code that will fail to exe-
cute on the randomized processor. However, all the existing imple-
mentations of ISR are based on emulators and binary instrumen-
tation tools that (i) incur a significant runtime performance over-
head, (ii) limit the ease of deployment of ISR, (iii) cannot protect
the underlying operating system kernel, and (iv) are vulnerable to
evasion attempts trying to bypass ISR protection.
To address these issues we propose ASIST: an architecture with

hardware and operating system support for ISR. We present the de-
sign and implementation of ASIST by modifying and mapping a
SPARC processor onto an FPGA board and running our modified
Linux kernel to support the new features. The operating system
loads the randomization key of each running process into a newly
defined register, and the modified processor decodes the process’s
instructions with this key before execution. Moreover, ASIST pro-
tects the system against attacks that exploit kernel vulnerabilities
to run arbitrary code with elevated privileges, by using a separate
randomization key for the operating system. We show that ASIST
transparently protects all applications and the operating system ker-
nel from machine code injection attacks with less than 1.5% run-
time overhead, while only requiring 0.7% additional hardware.

Categories and Subject Descriptors

D.4.6 [Operating Systems]: Security and Protection—Invasive soft-

ware; C.0 [General]: Hardware/software interfaces; System archi-
tectures

Keywords

Instruction Set Randomization; Code Injection Attacks; Architec-
tural Support; Hardware Support; Security; Performance

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CCS’13, November 4–8, 2013, Berlin, Germany.

Copyright 2013 ACM 978-1-4503-2477-9/13/11 ...$15.00.

http://dx.doi.org/10.1145/2508859.2516670.

1. INTRODUCTION
Code injection attacks exploit software vulnerabilities to inject

and execute arbitrary malicious code, allowing the attacker to ob-
tain full access to the vulnerable system. There are several ways
to achieve arbitrary code execution through the exploitation of a
software vulnerability. The vast majority of code injection attacks
exploit vulnerabilities that allow the diversion of control flow to
the injected malicious code. Arbitrary code execution is also pos-
sible through the modification of non-control-data [17]. The most
commonly exploited vulnerabilities for code injection attacks are
buffer overflows [2]. Despite considerable research efforts [20, 21,
23, 25, 50], buffer overflow vulnerabilities remain a major security
threat [18]. Other vulnerabilities that allow the corruption of criti-
cal data are format-string errors [19] and integer overflows [51].

Remotely exploitable vulnerabilities are continuously being dis-
covered in popular network applications [7,8] and operating system
kernels [3, 4, 6, 16]. Thus, code injection attacks remain one of the
most common security threats [2], exposing significant challenges
to current security systems. For instance, the massive outbreak of
the Conficker worm in 2009 infected more than 10 million ma-
chines worldwide [40]. Like most of the Internet worms, Conficker
was based on a typical code injection attack that exploited a vulner-
ability in Windows RPC [5]. Along with the continuous discovery
of new remotely exploitable vulnerabilities and zero-day attacks,
the increasing complexity and sophisticated evasive methods of at-
tack techniques [24, 37] has significantly reduced the effectiveness
of attack detection systems.

Instruction Set Randomization (ISR) [9, 10, 13, 29, 31, 41] has
been proposed to defend against any type of code injection attack.
ISR randomizes the instruction set of a processor so that an attacker
is not able to know the processor’s “language” to inject meaning-
ful code. Therefore, any injected code will fail to accomplish the
desirable malicious behavior, probably resulting in invalid instruc-
tions. To prevent successful machine code injections, ISR tech-
niques encrypt the instructions of a possibly vulnerable program
with a program-specific key. This key actually defines the valid in-
struction set for this program. The processor decrypts at runtime
every instruction of the respective process with the same key. Only
the correctly encrypted instructions will lead to the intended code
execution after decryption. Any injected code that is not encrypted
with the correct key will result in irrelevant or invalid instructions.

Existing ISR implementations use binary transformation tools
to encrypt the programs. For runtime decryption they use emula-
tors [13,31], or dynamic binary instrumentation tools [9,10,29,41].
However, they have several limitations: (i) They incur a signifi-
cant runtime performance overhead due to the software emulator
or instrumentation tool. This overhead is prohibitive for a wide
adoption of such techniques. (ii) Deployment is limited by the ne-

cessity of several tools, like emulators, and manual encryption of
the programs that are protected with ISR. (iii) They are vulnerable
to code injection attacks into the underlying emulator or instrumen-
tation tools. More importantly, they do not protect against attacks
targeting kernel vulnerabilities [3, 4, 6, 16], which are becoming an
increasingly attractive target for attackers. (iv) Most ISR imple-
mentations are vulnerable to evasion attacks aiming to guess the
encryption key and bypass ISR protection [48, 53].
To address these issues we propose ASIST: a hardware/software

scheme to support ISR on top of an unmodified ISA. Hardware
extensions to enhance security have been proposed in the past [23,
28, 44, 50]. We advocate that hardware support for ISR is essential
to guard against code injection attacks, at both user- and kernel-
level, without incurring significant performance penalty at runtime.
ASIST uses distinct per-process keys and another key for the op-

erating system kernel’s code. To support runtime decryption at the
CPU, we propose the use of two new registers in the ASIST-enabled
processor: the oskey and usrkey registers, which contain the ker-
nel’s key and the user-level key of the running process. These regis-
ters are memory mapped and they are only accessible by the operat-
ing system via privileged instructions. Our implementation for the
SPARC architecture maps these registers into a new Address Space
Identifier (ASI). The operating system is responsible for reading or
generating the key of each program at load time, and associating it
with the respective process. It is also responsible for storing at the
usrkey register the key of the next process scheduled for execution
at a context switch. Whenever a trap to kernel is called, the CPU
enters into supervisor mode and the value of the oskey register is
used to decrypt instructions. When the CPU is not in supervisor
mode, it decrypts each instruction using the usrkey register.
We explore two possible choices for implementing the decryp-

tion unit at the instruction fetch pipeline stage of the modified pro-
cessor. We also implement two different encryption algorithms,
(i) XOR and (ii) Transposition, and use different key sizes. Ad-
ditionally, we compare two alternative techniques for encrypting
the executable code: (i) statically, by adding a new section in ELF
that contains the key and encrypting all code sections with this key
using a binary transformation tool, and (ii) dynamically, by gener-
ating a random key at load time and encrypting with this key at the
page fault handler all the memory mapped pages that contain code.
The dynamic encryption approach can support dynamically linked
shared libraries, whereas static encryption requires statically linked
binaries. We discuss and evaluate the advantages of each approach
in terms of security and performance. Our modified processor can
also encrypt the return address at each function call and decrypt
it before returning to caller. This way, ASIST protects the system
from return-oriented programming (ROP) attacks [14, 45], but not
from jump-oriented programming (JOP) attacks [12].
To demonstrate the feasibility of our approach we present the

prototype implementation of ASIST bymodifying the Leon3 SPARC
V8 processor [1], a 32-bit open-source synthesizable processor [26].
We also modified the Linux kernel 3.8 to support the implemented
hardware features for ISR and evaluate our prototype. Our ex-
perimental evaluation results show that ASIST is able to prevent
code injection attacks practically without any performance over-
head, while adding less than 1% of additional hardware to support
ISR with our design. Our results also indicate that the proposed
dynamic code encryption at the page fault handler does not impose
any significant overhead, due to the low page fault rate for pages
with executable code. This outcome makes our dynamic encryp-
tion approach very appealing, as it is able to transparently encrypt
any executable program, it generates a different random key at each
execution, and it supports shared libraries with negligible overhead.

The main contributions of this work are:

• We propose ASIST: the first hardware-based support for ISR
to prevent machine code injections without any performance
overhead. We demonstrate the feasibility of hardware-based
support for ISR by presenting the design, implementation,
and experimental evaluation of ASIST.

• We introduce a dynamic code encryption technique that trans-
parently encrypts pages with executable code at the page
fault handler, using a randomly generated key for each exe-
cution. We show that this technique supports shared libraries
and does not impose significant overhead to the system.

• We explore different choices for the decryption unit in hard-
ware, we compare static and dynamic encryption, as well as
different encryption algorithms and key sizes in order to im-
prove the resistance of ISR against evasion attempts.

• We show that a hardware-based ISR implementation, like
ASIST, is able to protect the system against attacks that ex-
ploit OS kernel vulnerabilities.

• We evaluated our prototype implementation with hardware-
enabled ISR and we showed that it is able to prevent code
injection attacks with negligible overhead.

2. INSTRUCTION SET RANDOMIZATION
In this section we describe our threat model, give some back-

ground on ISR, and discuss the main limitations of existing imple-
mentations that emphasize the need for hardware support.

2.1 Threat Model
Remote and local machine code injection attacks. The threat

model we address in this work is the remote or local exploitation of
any software vulnerability that allows the diversion of the control
flow to execute arbitrary, malicious code. We address vulnerabili-
ties in the stack, heap, or BSS, e.g., any buffer overflow that over-
writes the return address, a function pointer, or any control data.
We focus on protecting the potentially vulnerable systems against
any type of machine code injection attacks.

Kernel vulnerabilities. Remotely exploitable vulnerabilities on
the operating system kernel [3, 4, 6, 16] are becoming an increas-
ingly attractive target for attackers. Our threat model includes code
injection attacks based on kernel vulnerabilities. We propose an ar-
chitecture that is capable of protecting the operating system kernel
as well. We also address attacks that use a kernel vulnerability to
run user-level code with elevated kernel privileges [32].

Return-to-libc and ROP attacks. Instead of injecting new code
into a vulnerable program, an attacker can execute existing code
upon changing the control flow of a vulnerable system: re-direct
the execution to existing library functions, attacks typically known
as return-to-libc attacks [35], or use existing instruction sequences
ending with a ret instruction (called gadgets) to implement the at-
tack, a technique known as return-oriented programming (ROP) [14,
45]. Although ISR protects a system against any type of code in-
jection attacks, its threat model does not address return-to-libc and
ROP attacks. Existing implementations of ISR follow this threat
model. However, due to the rise of such attacks, we aim to protect
systems from them using the same hardware.

Key guessing attacks. Existing ISR implementations are vul-
nerable to key guessing or key stealing attacks [48, 53]. This way,
sophisticated attackers may be able to bypass the ISR protection
mechanism, by guessing the key and then injecting and executing
code that is correctly encoded with this key. In this work, we aim
to design and implement ISR in a way that it will be very difficult
for attackers to guess or infer the code randomization key.

ISR Implementation
Runtime

Overhead

Shared

Libraries

Self-modifying

Code

Hardware

Support
Encryption

Dynamic

Encryption

Kernel

Protection
ROP Prevention

Bochs emulator [31] High No No No XOR with 32-bit key No No No

Valgrind tool [9, 10] High Yes API No XOR with random key Yes No No

Strata SDT [29] Medium No No No AES with 128-bit key No No No

EMUrand emulator [13] Medium No No No XOR with 32-bit key No No No

Pin tool [41] Medium Yes Partially No XOR with 16-bit key No No No

ASIST Zero Yes API Yes
XOR with 32-bit–128-bit key,
Transposition with 160-bit key

Yes Yes Yes

Table 1: Comparison of ASIST with existing ISR implementations. ASIST provides a hardware-based implementation of ISR without

runtime overhead, it supports the necessary features of current systems and protects against kernel vulnerabilities.

2.2 Defense with ISR
ISR protects a system against any native code injection attacks.

To accomplish this, ISR uses per-process randomized instruction
sets. This way, the attacker cannot inject any meaningful code into
the memory of the vulnerable program. The injected code will not
perform the intended malicious behavior and will probably crash
after just a few instructions [9]. To apply the ISR idea, existing im-
plementations first encrypt the binary code of each program with
the program’s secret key before it is loaded for execution. The pro-
gram’s key defines the mapping of the encrypted instructions to the
real instructions supported by the CPU. Then, at runtime, the ran-
domized processor decrypts every instruction with the proper pro-
gram’s key before execution. Injected instruction sequences that
have not been correctly encrypted will result in irrelevant or invalid
instructions after the obligatory decryption. On the other hand, cor-
rectly encrypted code will be decrypted and executed normally.

2.3 Limitations of Existing Implementations
Existing ISR Implementations use binary transformation tools,

such as objcopy, to encrypt the code of user-level programs that
will be protected. For runtime decryption they use emulators [33]
or dynamic binary instrumentation tools [34,36,42]. In Table 1 we
list and compare all the existing ISR implementations.
Kc et al. [31] implemented ISR by modifying the Bochs emula-

tor [33] using XOR with a 32-bit key in their prototype. The use of
an emulator results in significant slowdown, up to 290 times slower
execution on CPU intensive applications. Barrantes et al. [9,10] use
Valgrind [36] to decrypt applications’ code, which is encrypted
with XOR and a random key equal to the program’s length. This
prototype supports shared libraries by copying each randomized li-
brary per process, and offers an API for self-modifying code. How-
ever, the performance overhead with Valgrind is also very high, up
to 2.9 times slower than native execution. Hu et al. [29] imple-
mented ISR with a software dynamic translation tool [42] using
AES encryption with 128-bit key size. Dynamic translation results
in lower but still significant performance overhead, that is close to
17% on average and as high as 250%. To reduce runtime overhead,
Boyd et al. [13] proposed a selective ISR that limits the emulated
and randomized execution only to code sections that are more likely
to contain a vulnerability. Portokalidis and Keromytis [41] imple-
mented ISR with shared libraries support using Pin [34]. The run-
time overhead ranges from 10% to 75% for popular applications,
while it has four-times slower execution when memory protection
is applied to Pin’s code.
The main limitations of the existing ISR implementations are:

1. High runtime performance overhead. All the existing im-
plementations of ISR have a considerable runtime overhead,
which becomes significantly higher for CPU-intensive appli-
cations. This is because all the proposed systems use ex-
tra software to emulate or translate the instructions before
they are executed, which results to more instructions and in-

creased execution times. We argue that the most efficient
approach is a hardware-based implementation of ISR.

2. Deployment difficulties. The need for several tools, such as
emulators and binary instrumentation tools, as well as the
need for manual encryption and the partial support for shared
libraries limit the ease of deployment of ISR. On the other
hand, we aim to build a system that will transparently protect
any program without modifications.

3. Cannot protect kernel vulnerabilities. None of the existing
ISR prototype implementations is able to defend against at-
tacks exploiting kernel vulnerabilities [3, 4, 6, 16, 32]. Such
attacks are getting increasingly popular and allow attackers
to run code with kernel privileges. Although Pin has been ex-
tended with PinOS to instrument kernel’s code as well [15],
it has not been used to implement ISR support for the kernel.
Even in this case, the code of PinOS would not be protected,
while the use of a virtual machine in PinOS would impose a
significant performance overhead.

4. Cannot prevent ROP attacks. ISR cannot protect a vulner-
able program against ROP attacks [14, 45], which use ex-
isting code to harm the system. This is because ISR was
proposed to prevent code injection attacks, not code-reuse
attacks. However, due to the rise of such attacks recently,
we would like to easily extend an ISR system to provide de-
fenses against ROP attacks.

5. Evasion attacks by guessing the encryption key. Many of
the proposed ISR implementations are vulnerable to evasion
attacks that try to guess the encryption key and inject valid
code into the vulnerable system [48,53]. Sovarel et al. [48]
demonstrate the feasibility of an incremental attack that uses
partial key guessing to reduce the number of tries needed to
find the key. Also, attackers may be able to steal or infer the
encryption key when memory secrecy breaks [53].

To put our work into context, we compare ASIST with other
ISR implementations in Table 1. ASIST is the only ISR imple-
mentation with hardware support, resulting in negligible runtime
overhead for any type of applications. ASIST also supports a new
dynamic code encryption approach that allows the transparent en-
cryption of any application with shared libraries. To defend against
attempts to guess or steal the encryption key, ASIST (i) stores the
encryption key in a hardware register accessible only by the kernel
through privileged instructions, and avoids storing the key in pro-
cess’s memory, (ii) generates a new random key at each execution
of the same program when dynamic encryption is used, (iii) sup-
ports large key sizes up to 128-bit, and (iv) besides XOR and trans-
position (already implemented), it supports more secure encryption
algorithms in case of memory disclosure. Moreover, ASIST pre-
vents the execution of injected code at the kernel by using separate
keys for user-level programs and kernel’s code. Finally, ASIST is
able to prevent ROP attacks using return address encryption.

Process Table

Scheduler

Encrypted

Binary A

sta [%key] %asi, %addrcontext switch

Execute
Instruction

Decode
Instruction

Fetch
Register
Access

Memory Exception Write-back

MMU

I/O Bus

DDR
Controler

ASI

D-cache

I-cache

Decrypt

Encrypted

instructions

key

usrkey
register

Supervisor
key

data

Main
Memory

Encrypted

Binary B

Encrypted

Binary C

process A keyA process B keyB process C keyC

Encrypted

Application Binary A

execve()

load_elf_binary()

asist_modeA=static

keyA=read_key()

Unmodified

Application Binary B

execve()

load_elf_binary()

asist_modeB=dynamic

keyB=random_key()

Unmodified

Application Binary C

execve()

load_elf_binary()

asist_modeC=dynamic

keyC=random_key()

Disk

Disk Disk

CPU

text page fault

ASI registers

DQ

EN

oskey
register

DQ

EN

__do_fault()

if (text_fault && asist_modeB==dynamic) {

new_page=alloc_page_vma(...); //anonymous page

copy_encrypted(new_page, f_page, keyB, ...);

//copy, encrypt, and map new anonymous page

}

Unencrypted

instructions

Page fault handler:

Disk

Figure 1: ASIST architecture. The operating system reads the

key from the ELF binary (static encryption) or randomly gen-

erates a new key (dynamic encryption), saves the key in the

process table, and stores the key of the running process in the

usrkey register. The processor decrypts each instruction with

usrkey or oskey register, according to the supervisor bit.

3. ASIST ARCHITECTURE
Our architecture spans hardware, operating system and user space

(see Figure 1), to support hardware-assisted ISR. ASIST supports
two alternative ways of code encryption: static and dynamic. In
static encryption, the key is pre-defined and exists within the exe-
cutable file, while all code sections are already encrypted with this
key. In case of dynamic encryption, the executable file is unmodi-
fied and the key is decided randomly by the respective loader of the
operating system at the beginning of each execution. The code sec-
tions are encrypted dynamically at runtime whenever a code page
is requested from file system and before this page gets mapped to
the process’s virtual address space.
The processor has been extended with two new registers: usrkey

and oskey, which store the keys of the running user-level process
and operating system kernel’s code respectively. The operating
system keeps the key of each process in a respective field in the
process table, and stores the key of the next process that is sched-
uled for execution in the usrkey register using the sta privileged
SPARC instruction. Moreover, the processor is modified to decrypt
each instruction before the instruction fetch cycle, using one of the
above two registers as a key, according to the supervisor bit.

ELF header

Program header table

.text

Section header table

.note.asist

.init

.fini

.rodata

...

.data

.bss

...

ELF header

Program header table

.text

Section header table

.init

.fini

.rodata

...

.data

.bss

...

ELF file before the encryption ELF file after the encryption

New section

Encrypted section

.section ".note.asist", "a"

.p2align 2

.long 1f - 0f # name size

.long 3f - 2f # desc size

.long 0x2 # type
0: .asciz "ASIST" # name
1: .p2align 2
2: .long 0x01234567 # desc (key)
3: .p2align 2

Figure 2: The ELF format of a statically encrypted executable

file. The key is stored in a new note section inside the ELF file,

and all the code sections are encrypted with this key.

3.1 Encryption
We support two possible options for encrypting an executable

program: static and dynamic encryption. In static encryption, the
program is encrypted before each execution with a pre-defined key.
In dynamic encryption, a key is randomly generated at the binary
loader, and all code pages are encrypted with this key at the page
fault handler before they are mapped to the process’s address space.

The main advantage of static code encryption is that it has no
runtime overhead. However, this approach has several drawbacks.
First, the same key is used for each execution, which makes it sus-
ceptible to brute force attacks trying to guess this key. Second, each
executable file needs to be encrypted before running. Third, static
encryption does not support shared libraries; all programs must be
statically linked with all necessary libraries. In contrast, dynamic
encryption has a number of advantages: it generates a random key
at each execution so it cannot be easily guessed, it encrypts all ex-
ecutables transparently without the need to run an encryption pro-
gram, and it is able to support shared libraries. The drawback of
dynamic encryption is a potential runtime overhead to encrypt a
code page when it is loaded to memory at a code page fault. In
Section 5 we show that due to the low number of code page faults,
dynamic encryption is very efficient.

3.1.1 Static Binary Encryption

To statically encrypt an ELF executable we extended objcopy
with a new flag (--encrypt-code). The encryption key can
be provided by the user, else it is randomly chosen by the tool.
Figure 2 shows the modifications of a statically encrypted ELF ex-
ecutable file. We add a new note section (.note.asist) inside
the encrypted ELF file that contains the program’s encryption key.
We also changed the ELF binary loader in the Linux kernel to read
the note section from the ELF, get the key, and store it in a new
field (key) of the current process. In this mode of operation we set
a new field per process (asist_mode) to static. The key is stored
in the process table and is used by the kernel to update the usrkey
hardware register each time this process is scheduled for execution.

Our static encryption tool also finds and encrypts all the code
sections in ELF. Therefore, all needed libraries must be statically
linked, to be properly encrypted. Moreover, it is important to com-
pletely separate code from data into different sections by the linker.
This is because the encryption of any data, which are not decrypted
by the modified processor, will probably disrupt the program ex-

ecution. Fortunately, many linkers are configured this way. Sim-
ilarly, compiler optimizations like jump tables, which are used to
perform faster switch statements with indirect jumps, should be
also moved to a separate, non-code section.
To address the issue of using the same key at all executions,

which may facilitate a key guessing attack, one approach could be
to re-encrypt the binary after a process crash. Another approach
could be to encrypt the original binary at the user-level part of
execve(), by randomly generating a new key and copying the
binary into an encrypted one. However, we do not recommend this
approach due to the extra time needed to copy and encrypt the en-
tire binary at load time, especially for large binaries that are also
statically linked with large libraries. Encrypting the entire binary is
probably an unnecessary overhead, as many parts of the code that
will be encrypted are unlikely to be actually executed.

3.1.2 Dynamic Code Encryption

We now introduce a new technique to dynamically encrypt a pro-
gram’s code before it is loaded into the process’s memory. This
approach is based on the fact that every page with executable code
will be loaded from disk (or buffer cache) to the process’s address
space the first time it is accessed by the program through a page
fault. Thus, we decided to perform the code encryption at this
point. This way, ASIST encrypts only the code pages that are actu-
ally used by the program at each execution.
First, the ELF binary loader is modified to randomly generate

a new key, which is stored into the process table. It also sets the
asist_mode field of the current process to dynamic. The code
encryption is performed by the page fault handler at a text page
fault, i.e., on a page containing executable code, if the process that
is responsible for the page fault uses dynamic encryption according
to asist_mode. Then, a new anonymous page is allocated, and
the code page fetched from disk (or buffer cache) is encrypted and
copied on this page using the process’s encryption key. The new
page is finally mapped to the process’s address space.
We allocate an anonymous page, i.e., a page that is not backed

by a file, and copy the encrypted code on this page, so that the
changes will not be stored at the original binary file. Although
processes running the same code could share the respective code
pages in physical memory, we have a separate copy of each page
with executable code for each process, as they have different keys.
This may result in a small memory overhead, but it is necessary in
order to use a different key per process and achieve better isolation.
In practice, the memory allocated for code accounts only for a small
fraction of the total memory. Note that we can still benefit from
buffer cache, as we copy the cached page.
We also modified the fork() system call to randomly generate

a new key for the child process. When the modified fork() copies
the parent process’s page table, it omits copying its last layer so that
the child’s code pages will not be mapped with pages encrypted
with the parent’s key. To operate correctly, the dynamic encryption
approach requires a separation of code and data per each page. For
this, we modify the linker to align the ELF headers, data, and code
sections to a new page, by adding the proper padding.

3.1.3 Shared Libraries

Our dynamic code encryption technique supports the use of shared
libraries without extra effort. The code of a shared library is en-
crypted with each process’s key on the respective page fault when
loading a page to process’s address space, as we explained above.
In this way we have a separate copy of each shared library’s page
for each process. This is necessary in order to use a different key
per process, which offers better protection and isolation.

3.1.4 Self-Modifying Code

The design we presented does not support randomized programs
with self-modifying code or runtime code generation, i.e., programs
that modify their code or generate and execute new code. To sup-
port such programs, we added a new system call in Linux ker-
nel: asist_encrypt(char *buf, int size). This sys-
tem call encrypts the code that exists in the memory region starting
from buf with size bytes length, using the current process’s key
that is stored in process table. However, the buf buffer may be
vulnerable to a code injection attack, e.g., due to a buffer overflow
vulnerability in the program that may lead to the injection of mali-
cious code into buf. Then, this code will be correctly encrypted us-
ing asist_encrypt() and will be successfully executed. Like
previous work supporting ISR with self-modifying code [9], we be-
lieve that programs should carefully use the asist_encrypt()
system call to avoid malicious code injection in buf.

3.1.5 Encryption Algorithms and Key Size

The simplest, and probably the fastest, encryption algorithm is to
XOR each bit of the code with the respective bit of the key. Since
code is much larger than a typical key, the bits of the key are reused.
To accelerate encryption we XOR code and key as words, instead
of bits. However, XOR was found to be susceptible to key guess-
ing and key extraction attacks [48, 53]. In our prototype we imple-
mented XOR encryption with key size that can range from 32-bit
to 128-bit, to reduce the probability of a successful guess. The key
size should be a multiple of 32-bit to support XOR between 32-bit
words. We also implemented transposition, which is a stronger en-
cryption algorithm than XOR. In transposition we shuffle the bits
of a 32-bit word using an 160-bit key. For each bit of the encrypted
word we choose one of the 32 bits of the original word based on the
respective bits of the key. We use the asist_mode flag to define
the encryption algorithm, key size, and encryption method.

3.1.6 Tolerance to Key Guessing Attacks

To evade ISR protection, an attacker can try to guess the encryp-
tion key and inject code encrypted with this key. The probability of
a successful guess with XOR encryption is 1/2key size, e.g., 1/232

for 32-bit key and 1/2128 for 128-bit key. In case of transposition,
the probability of a successful guess is 1/32!, which is much lower
than the respective probability with XOR. In case of a single guess,
all the above probabilities seem good enough to protect a system.
However, if the same key is used consistently, e.g., in case of static
encryption, a brute force attack can be used to eventually guess the
correct key. Sovarel et al. [48] present an incremental attack that
reduces the number of tries needed to find the encryption key by
observing system’s behavior. ASIST can address such attacks with
dynamic encryption, as a new key is generated before each execu-
tion. Barrantes et al. [9] show that code injections in systems pro-
tected with ISR result in the execution of at most five instructions
before causing an exception. Therefore, with dynamic encryption,
the probability of success of a brute force or incremental attack re-
mains 1/2key size with XOR or 1/32! with transposition.

3.2 Hardware Support
Figure 3 outlines ASIST’s hardware architecture for ISR support

when using XOR with a 32-bit key. We added two new registers
to store the encryption keys: usrkey and oskey. These registers are
memory mapped using a new Address Space Identifier (ASI), and
are accessible only by the operating system through two privileged
SPARC instructions: sta (store word to alternate space) and lda

(load word from alternate space). The operating system sets the
usrkey register using sta with the key of the user-level process that

2-to-4

decoder

Instruction cache

Encrypted

instruction

MMU

Supervisor

Unencrypted

instructionkey

usrkey
register

QD

EN

oskey
register

QD

EN

32

32

32

32
32

Main
Memory

32

32

32

sta [%key] %asi, %addr

key

key

ASI

ASI
Offset

2

32
Address

32
32
32
32

Instruction

Fetch

Offset
2

Address
32

cacheline

Unencrypted instructions

32

EN EN EN EN

Figure 3: ASIST hardware support for runtime instruction decryption. We see the modified ASIST processor that decrypts every

instruction with XOR and 32-bit key before the instruction cache. The key of the user-level running process is stored in usrkey

register, and operating system’s key is stored in oskey register. The supervisor bit defines which of these two keys will be used.

is scheduled for execution before each context switch. In case of
a 32-bit key, a single sta instruction can store the entire key. For
larger keys, more than one sta instructions may be needed.
The ASIST processor chooses between usrkey and oskey for de-

crypting instructions based on the value of the Supervisor bit. The
Supervisor bit is 0 when the processor executes user-level code, so
the usrkey is used for decryption, and it is 1 when the processor
executes kernel’s code (supervisor mode), so the oskey is selected.
When a trap instruction is executed (ta instruction in SPARC), con-
trol is transferred from user to kernel and the Supervisor bit changes
from 0 to 1; interrupts are treated similarly. Thus, the next in-
structions will be decrypted with oskey. Control is transferred back
to user from kernel with the return from trap instruction (rett in
SPARC). Then the Supervisor bit becomes 0 and the usrkey is used.
The context switch is performed when the operating system runs,
and oskey is used for decryption. Then the proper key of the process
that will run immediately after rett is stored at usrkey.
The decryption unit is placed before the instruction fetch cycle,

when instructions are moved frommemory to the instruction cache.
We should note that decryption fits in the processor’s pipeline and
no extra cycle is spent on it. Therefore, we expect no runtime over-
head from the hardware decryption part. We expect a slight in-
crease on the cost and on the power consumption due to the extra
hardware we used. Also, ASIST’s hardware architecture is back-
wards compatible with programs and operating system kernels that
are not encrypted. We set the default value of the key registers to
zero, which has no effect on the decryption.

3.2.1 Placement of the Decryption Unit

We decided to place the decryption unit as early as possible in the
modified processor to avoid adding any performance overhead or
spend an extra cycle, and to avoid breaking any runtime optimiza-
tions made by the processor. There are two possible choices for
placing the decryption unit: before and after the instruction cache.
Figure 4 presents the two options. When the decryption unit is after
the instruction cache, the instructions are stored encrypted and the
decryption takes place at each fetch cycle. Therefore, it is on the
critical path of the processor and may add a delay for more complex
decryption algorithms. Also, as the decryption circuit is utilized at
each fetch cycle, it may result in increased power consumption.
However, this approach protects the system from a possible code
injection in the instruction cache.
On the other hand, when the decryption unit is located before the

instruction cache, it is accessed only on instruction cache misses.
This leads to reduced power consumption for decryption, as the in-
structions that are executed many times, e.g., in loops, are found de-

crypted in the instruction cache. Also, an increased delay for more
complex encryption at this point will not have significant impact to
the overall performance of the processor. In this case, instructions
are stored unencrypted into the instruction cache, which could be
vulnerable to code injections in the instruction cache. However, to
the best of our knowledge, it is not possible to inject code in the
instruction cache without passing from the path we have modified
to decrypt each instruction. For this reason, we selected to place
the decryption unit before the instruction cache.

3.2.2 Decryption Algorithms and Key Size

Figure 5 shows the implementation of XOR decryption with 128-
bit key. Since each encrypted instruction in our architecture is a 32-
bit word, we need to select the proper 32-bit part of the 128-bit key,
the same part that was used in the encryption of this instruction.
Thus, we use the two last bits of the instruction’s address to select
the correct 32-bit part of the 128-bit key using a multiplexer, and
finally decrypt the instruction. The same approach is used for XOR
decryption with other key sizes, multiple of 32 bits.

The implementation of decryption with transposition, as shown
in Figure 6, requires significantly more hardware. This is because
it needs 32 multiplexers, one per bit of the decrypted instruction.
Each multiplexer has 32 input lines with all the 32 bits of the en-
crypted instruction, to choose the proper bit. It also has 5 select
lines that define the selection of the input bit at each position. The
select lines of each multiplexer are part of the 160-bit key. Besides
the additional hardware, the runtime operation of transposition is
equally fast with XOR, as it does not spend an extra cycle and does
not impose any delay to the processor. To dynamically select the
decryption algorithm and key size, we have added another memory
mapped register: asist_mode.

3.2.3 Return Address Encryption

To transparently protect a system against return-to-libc and ROP
attacks [14, 45], we extended our hardware design to provide pro-
tection of the return address integrity without any runtime over-
head. To this end, we slightly modified the ASIST processor to
encrypt the return address in each function call using the process’s
key, and decrypt it just before returning to the caller. This is similar
to the XOR random canary defense [21], which uses mprotect()
to hide the canary table from attackers. On the other hand, we take
advantage of the two hardware key registers, which are not acces-
sible by an attacker, to hide the encryption key. Also, our hardware
implementation does not impose any performance overhead.

In the SPARC V8 architecture, function calls are performed with
the call synthetic instruction, which is equal to jmpl func_addr,%o7.

Instruction cache

Decryption
unit

Unencrypted

instruction

32 32 Instruction
Fetch

Unencrypted instructions

key
32

Encrypted

instruction

32
Unencrypted

instruction

Address

32

(a) Decryption before the instruction cache

Instruction cache

Decryption
unit

Encrypted

instruction

32
Instruction

Fetch

Encrypted instructions

32

Encrypted
instruction

32

key

32

Unencrypted

instruction

Address

32

(b) Decryption after the instruction cache

Figure 4: Alternative choices for the placement of the decryption unit in the ASIST-enabled processor.

Hence, call writes the contents of the program counter (PC), i.e.,
the return address, into the o7 register, and then transfers the control
to the function’s address func_addr. To return from a function, the
ret synthetic instruction is used, which is equal to jmpl %i7+8,%g0

when returning from a normal subroutine (i7 register in the callee is
the same with o7 register in the caller) and jmpl %o7+8,%g0 when
returning from a leaf subroutine.
To encrypt the return address on each function call, we just XOR

the value of the PC with the usrkey register when a call or jmpl
instruction is executed and the value of the PC is stored into the
o7 register. The return address, i.e., the i7 register in the callee, is
decrypted with usrkey when a jmpl instruction uses the i7 register
(or o7 in case of leaf subroutine) to change the control flow (ret
instrunction). Thus, the modified processor will return to the (%i7

XOR usrkey)+8 address.
This way, the return address remains always encrypted, e.g., when

it is pushed onto the stack (window overflow), and it is always de-
crypted by the jmpl instruction when returning. Hence, any modifi-
cation of the return address, e.g., though a stack-based buffer over-
flow or fake stack by changing the stack base pointer, or any ret

instructions executed by a ROP exploit without the proper call, will
lead to an unpredictable return address upon decryption, as the us-
rkey is unknown to the attacker.
Note that jmpl is also used for indirect jumps, not only for func-

tion calls and return, so our modified jmpl decrypts the given ad-
dress only when the i7 (or o7) register is used. This is a usual con-
vention for function calls in SPARC and it should be obeyed, i.e.,
the i7 and o7 registers should not be used for any indirect jumps
besides returning from function calls. Also, the calling conven-
tions should be strictly obeyed: return address cannot be changed
in any legal way before returning, and ret instructions without a
preceding call instruction cannot be called without a system crash.
As the calling conventions are not always strictly obeyed in several
legacy applications and libraries, the use of return address encryp-
tion may not be always possible. Therefore, although ASIST offers
this hardware feature, it may or may not be enabled by the soft-
ware. We use one bit of the asist_mode register to define whether
the return address encryption will be enabled or not.

3.3 Operating System Support
We now describe the new functionality we added in the operating

system to support the ASIST hardware features for ISR in order to
protect the system from attacks against possibly vulnerable user-
level processes and kernel’s vulnerabilities.

3.3.1 Kernel Modifications

In our prototype we modified the Linux kernel, and we ported
our changes to 2.6.21 and 3.8 kernel versions. First, we added two
new fields in the process table records (task_struct in Linux
kernel): the process’s key and the asist_mode. We initialize the pro-
cess’s key to zero and asist_mode to dynamic, so each unencrypted
program will be dynamically encrypted.

Unencrypted

instruction

32

key

32

Encrypted

instruction

128

32 bit

32 bit

32 bit 32

32 bit
32

32

32

32

Offset

2

Figure 5: Decryption using XOR with 128-bit key. Based on the

last two bits of the instruction’s address (offset) we select the

respective 32-bit part of the 128-bit key for decryption.

Unencrypted
instruction

32

key

32

Encrypted

instruction

32
...

32

160

32
...

32

32
...

32

5

5

5

Bit 0

Bit 1

Bit 31

5 bit 5 bit ... 5 bit

160 bit

5 5 5

...

Figure 6: Decryption using transposition with 160-bit key. The

implementation of transposition requires significantly more

hardware, because it needs 32 multiplexers with all the 32 bits

of the encrypted instruction as input lines in each one.

We changed the binary ELF loader to read the key of the ex-
ecutable ELF file, in case it is statically encrypted, or generate
a random key, in case of dynamic encryption, after calling the
execve() system call. Then, the loader stores the process’s key
to the respective process table record. We also changed the sched-
uler to store the key of the next process that is scheduled to run in
the usrkey register before each context switch. For this, we added
an sta instruction before the context switch to store a 32-bit key.
For larger keys, the number of sta instructions depends on key size.

To implement dynamic encryption and shared library support we
modified the page fault handler. For each page fault, we first check
whether it is related to code (text page fault) and whether the pro-
cess that caused the page fault uses dynamic code encryption. If
so, we allocate a new anonymous page that is not backed by any
file. Upon the reception of the requested page from disk (or buffer
cache), we encrypt its data with process’s key and copy it at the
same step into the newly allocated page. Then, the new page is
mapped into the process’s address space. Eventually, this page will
contain the code that will be accessed by the process.

3.3.2 Kernel Encryption

To encrypt kernel’s code we used the same approach with static
binary encryption. We modified an uncompressed kernel image by
(i) adding a new note section that contains the kernel’s encryption
key, and (ii) identifying and encrypting all code sections. We had
to carefully separate code from data into different sections while
building the kernel image. The oskey register saves the key of ker-
nel’s encrypted code. We modified the bootloader to read and then
store the kernel’s key into the oskey register with an sta instruc-
tion, just before the control is transfered from bootloader to kernel.
Since oskey is initialized with zero, which has no effect in XOR de-
cryption that is also default, the unencrypted code of the bootloader
can be successfully executed in the randomized processor.
We decided to statically encrypt the kernel’s code so as to not add

any delay to the boot process. Due to this, the key is decided once
when the kernel image is built and encrypted, and it cannot change
without re-encryption. Another option would be to encrypt the ker-
nel’s code while booting, using a new key that is randomly gener-
ated at this point. This option could add a further delay to the boot
process. However, most systems typically use a compressed kernel
image that is decompressed while booting. Thus, we can encrypt
the kernel’s code during the kernel loading stage when the image
is decompressed into memory. The routine that decompresses and
loads the kernel to memory must first generate a random key and
then encrypt the kernel’s code along with decompression.

4. ASIST PROTOTYPE IMPLEMENTATION
In this section we describe the ASIST prototype implementation,

we present the results of the hardware synthesis using an FPGA
board, in terms of additional hardware needed compared to the un-
modified processor, and finally we discuss how the proposed sys-
tem can be easily ported to other architectures and systems.

4.1 Hardware Implementation
We modified Leon3 SPARC V8 processor [1], a 32-bit open-

source synthesizable processor [26], to implement the security fea-
tures of ASIST for hardware-based ISR support, as we described
in Section 3.2. All hardware modifications required fewer than 100
lines of VHDL code. Leon3 uses a single-issue, 7-stage pipeline.
Our implementation has 8 register windows, an 16 KB 2-way set
associative instruction cache, and a 16 KB 4-way set associative
data cache. We synthesized and mapped the modified ASIST pro-
cessors on a Xilinx XUPV5 ML509 FPGA board [54]. The FPGA
has 256 MB DDR2 SDRAM memory and the design operates at
80 MHz clock frequency. It also has several peripherals including
an 100Mb Ethernet interface.

4.2 Additional Hardware
Table 2 shows the results of the synthesis for three different

hardware implementations of ASIST, using XOR decryption with
32-bit and 128-bit keys, and decryption with transposition using
160-bit key. We compare them with the unmodified Leon3 pro-
cessor as a baseline to measure the additional hardware used by
ASIST to implement ISR functionality in each case. We see that
ASIST with XOR encryption and 32-bit key adds less than 1% of
additional hardware, both in terms of additional flip flops (0.73%)
and lookup tables (0.61%). When a larger key of 128 bits is used
for encryption, we observe a slight increase in the number of flip
flops (2.81%) due to the larger registers needed to store the two
128-bit keys. The implementation of transposition results in sig-
nificantly more hardware used, both for flip flops (6.62% increase)
and lookup tables (6.87% increase). This is due to the larger circuit

Synthesized Processor Flip Flops LUTs

Vanilla Leon3 9,227 16,986

XOR with 32-bit key 9,294 (0.73% increase) 17,090 (0.61% increase)

XOR with 128-bit key 9,486 (2.81% increase) 17,116 (0.77% increase)

Transposition with 160-bit key 9,838 (6.62% increase) 18,153 (6.87% increase)

Table 2: Additional hardware used by ASIST. We see that

ASIST adds just 0.6%–0.7% more hardware with XOR de-

cryption using a 32-bit key, while it adds significantly more

hardware (6.6%–6.9%) when using transposition.

used for the hardware implementation of transposition, which con-
sists of 32 multiplexers with 32 input lines each, as we showed in
Section 3.2.2.

4.3 Kernel and Software Modifications
The resulting system is a full-featured SPARC workstation using

a Linux operating system. We modified the Linux kernel as we de-
scribed in Section 3.3. We ported our Linux kernel modifications
in 2.6.21 and 3.8.0 kernel versions. We built a cross compilation
tool chain with gcc version 4.7.2 and uClibc version 0.9.33.2
to cross compile the Linux kernel, libraries, and user-level appli-
cations. Thus, all programs running in our system (both vanilla
and ASIST), including vulnerable programs and benchmarks, were
cross compiled with this tool chain on another PC. We slightly
modified linker scripts to separate code and data for both static and
dynamic code encryption, and align headers, code, and data into
separate pages in case of dynamic encryption. To implement static
encryption, we extended objcopy with the --encrypt-code
flag. The key can be provided by the user or randomly chosen.

4.4 Portability to Other Systems
Our approach is easily portable to other architectures and op-

erating systems. Regarding ASIST’s hardware extensions, imple-
menting new registers that are accessible by the operating system
is quite easy in most architectures, including x86. Encrypting the
return address at each function call and decrypting it before return-
ing depends on the calling convention at each architecture. For
instance, in x86 it can be implemented by slightly modifying call

and ret instructions. In our current design, we have implemented
the runtime instruction decryption for RISC architectures that use
fixed-length instructions. Thus, porting the decryption functional-
ity in other RISC systems will be straight-forward. On the other
hand, CISC architectures such as x86 support variable-length in-
structions. However, our approach can also be implemented in such
architectures with minor modifications. Since instructions reside
in memory before they are executed, we can simply encrypt them
without the need of precise disassembly, e.g., in blocks of 32-bits,
depending on the key size. In architectures with variable-length in-
structions this encryption will not be aligned at each instruction, but
this is not an issue. The memory blocks will be decrypted accord-
ingly by the modified processor before execution. For instance,
a memory block can be decrypted based on the byte offset of its
respective memory address. Also, since we have placed the de-
cryption unit before the instruction cache, decryption is performed
at each word that is stored in cache, rather than at each instruction.

We have implemented our prototype by modifying the Linux ker-
nel. However, the same modifications can be made in other oper-
ating systems as well, as we change generic kernel modules such
as the binary loader, the process scheduler and context switch, and
the page fault handler. These modules exist in all modern operat-
ing systems and they can be changed respectively to support the
hardware features offered by a randomized processor.

CVE Reference Vulnerability Description Access Vector Location Vulnerable Program

CVE-2010-1451
Linux kernel before 2.6.33 does not properly implement a non-executable stack on SPARC
platform

Local Stack Custom

CVE-2013-0722 Buffer overflow due to incorrect user-supplied input validation Remote Stack Ettercap 0.7.5.1 and earlier

CVE-2012-5611
Buffer overflow that allows remote authenticated users to execute arbitrary code via a long
argument to the GRANT FILE command

Remote Stack
Oracle MySQL 5.1.65 and
MariaDB 5.3.10

CVE-2002-1549 Buffer overflow that allows to execute arbitrary code via a long HTTP GET request Remote Stack Light HTTPd (lhttpd) 0.1

CVE-2002-1337 Buffer overflow that allows to execute arbitrary code via certain formatted address fields Remote BSS Sendmail 5.79 to 8.12.7

CVE-2002-1496
Buffer overflow that allows to execute arbitrary code via a negative value in the Content-
Length HTTP header

Remote Heap
Null HTTPd Server 0.5.0 and
earlier

CVE-2010-4258
Linux kernel allows to bypass access_ok() and overwrite arbitrary kernel memory locations
by NULL pointer dereference to gain privileges

Local Kernel Linux kernel before 2.6.36.2

CVE-2009-3234
Buffer overflow that allows to execute arbitrary user-level code via a ”big size data“ to the
perf_counter_open() system call

Local
Kernel
stack

Linux kernel 2.6.31-rc1

CVE-2005-2490
Buffer overflow that allows to execute arbitrary code by calling sendmsg() and modifying
the message contents in another thread

Local Stack Linux kernel before 2.6.13.1

Table 3: Representative subset of code injection attacks tested with ASIST. We see that ASIST is able to successfully prevent code

injection attacks targeting vulnerable user-level programs as well as kernel vulnerabilities.

5. EXPERIMENTAL EVALUATION
We mapped our prototype onto an FPGA running two versions

of the Linux kernel, 2.6.21 and 3.8, as described in Section 4. We
used the Ethernet adapter of the FPGA and configured the system
with networking and a static IP address. This allows for remote
exploitation attempts for our security evaluation, and for evaluating
the performance of a Web server. As the available memory on the
FPGA is only 256 MB, and there is no local disk in the system,
we used NFS to mount a partition of a local PC that contains all
the cross compiled programs needed for the evaluation. To avoid
measuring NFS delays in our evaluation, we copied each executable
program in the local RAM file system before its execution.
We evaluated the ASIST prototype that uses XOR encryption

with a 32-bit key, comparing static and dynamic encryption im-
plementations with an unmodified system (vanilla processor and
unmodified operating system). We observed that using a larger
key or transposition instead of XOR for encrypting instructions has
the same effectiveness on preventing code injection attacks and the
same efficiency in terms of performance. We did not use the return
address encryption in our security and performance evaluation.

5.1 Security Evaluation
To demonstrate the effectiveness of ASIST at preventing code

injection attacks exploiting user- or kernel-level vulnerabilities, we
tested a representative sample of attacks shown in Table 3. The
first six attacks target buffer overflow vulnerabilities on user-level
programs, while the last three attacks target a NULL pointer deref-
erence and two buffer overflow vulnerabilities of the Linux kernel.
First, we ran a vanilla 2.6.21 kernel, which does not properly

implement a non-executable stack on SPARC. We built a custom
program with a typical stack-based buffer overflow vulnerability,
and we used a large command-line argument to inject SPARC exe-
cutable code into the program’s stack, which was successfully ex-
ecuted by overwriting the return address. We then used an ASIST
modified kernel without enabling the return address encryption, and
we ran a statically encrypted version of the vulnerable program
with the same argument. In this case, the program was terminated
with an illegal instruction exception, as the unencrypted injected
code could not be executed. Similarly, we ran an unencrypted ver-
sion of the vulnerable program and relied on the page fault handler
for dynamic code encryption. Again, the injected code caused an
illegal instruction exception due to the ISR.
We performed similar tests with all the other vulnerable pro-

grams: Ettercap, which is a packet capture tool, MariaDB database,
Light HTTPd and Null HTTPd webservers, and sendmail. These

programs were cross compiled with our toolchain and encrypted
with our extended objcopy tool. In all cases our remotely in-
jected shellcode was executed successfully only on the vanilla sys-
tem, while ASIST always prevented the execution of the injected
code and resulted in illegal instruction exception.

We also tested attacks exploiting three kernel vulnerabilities with
and without ASIST. We cross compiled, modified and encrypted
three different kernel versions for each one: 2.6.21, 2.6.31-rc1 and
2.6.11. When running the vanilla kernel on the unmodified proces-
sor, the kernel exploits resulted in the successful execution of the
provided user-level code with kernel privileges. On the other hand,
the encrypted kernels with ASIST resulted in kernel panic for all
the exploits, avoiding a system compromise with kernel privileges.

5.2 Performance Evaluation
To evaluate ASIST’s performance we compare (i) vanilla Leon3

with unmodified Linux kernel (Vanilla), (ii) ASIST with static
encryption (ASIST-Static), and (iii) ASIST with dynamic code
encryption (ASIST-Dynamic), when running the SPEC CPU2006
benchmark suite and two real world applications.

5.2.1 Benchmarks

We ran all the integer benchmarks from the SPEC CPU2006
suite (CINT2006) [49], which includes several CPU-intensive ap-
plications. Figure 7 shows the slowdown of each benchmark when
using ASIST with static and dynamic encryption, compared to the
vanilla system. We see that both ASIST implementations impose
less than 1.5% slowdown in all benchmarks. For most benchmarks,
ASIST exhibits almost the same execution times as with the un-
modified system. This is due to the hardware-based instruction de-
cryption, which does not add any observable delay. Moreover, the
modified kernel performs minor extra tasks: it reads the key from
the executable file (for static encryption) or it randomly generates
a new key (for dynamic encryption) only once per each execution,
while it adds just one extra instruction before each context switch.
We notice a slight deviation from the vanilla execution time only for
three of the benchmarks: gcc, sjeng, and h264ref. For these
benchmarks, we observe a slight slowdown of 1%–1.2% in static
and 1%–1.5% in dynamic encryption. This deviation is probably
due to the different linking configurations (statically linked versus
dynamically linked shared libraries).

One might expect that the dynamic encryption approach would
experience a considerable performance overhead due to the ex-
tra memory copy and extra work needed to encrypt code pages at
each text page fault. However, our results in Figure 7 indicate that

0.90

0.95

1.00

1.05

1.10

1.15

1.20

400.perlbench

401.bzip2

403.gcc

429.m
cf

445.gobm
k

456.hm
m

er

458.sjeng

462.libquantum

464.h264ref

S
lo

w
d

o
w

n
Vanilla

ASIST-Static
ASIST-Dynamic

Figure 7: Runtime overhead using the SPEC CPU2006 bench-

mark suite. We see that both ASIST implementations have neg-

ligible runtime overhead compared to the vanilla system.

Benchmark Data page faults per second Text page faults per second

400.perlbench 38.4964 1.97215

401.bzip2 44.3605 0.193831

403.gcc 60.3235 3.93358

429.mcf 51.7769 0.0497679

445.gobmk 25.4735 0.905984

456.hmmer 0.0546246 0.0223249

458.sjeng 71.9751 0.0676988

462.libquantum 5.18675 0.0486765

464.h264ref 3.19614 0.0333707

Table 4: Data and text page faults per second when running the

SPEC CPU2006 benchmark suite. All benchmarks have very

few text page faults per second, which explains the negligible

overhead of the dynamic encryption approach.

dynamic encryption performs equally well with static encryption.
Thus, our proposed approach to dynamically encrypt program code
at the page fault handler, instead of statically encrypt the code be-
fore program’s execution, does not seem to add any extra overhead.
To better understand the performance of this approach, we instru-

mented the Linux kernel to measure the data and text page faults of
each process that uses the dynamic encryption mode. Table 4 shows
the data and text page faults per second for each benchmark. We
see that all benchmarks have a very low rate of text page faults, and
most of them experience significantly less than one text page fault
per second. Moreover, we observe that the vast majority of page
faults are for data pages, while only a small percentage of the total
page faults are related to code. Therefore, we notice a negligible
overhead with dynamic code encryption at the page fault handler
for two main reasons: (i) as we see in Table 4, text page faults
are very rare, and (ii) the overhead of the extra memory copy and
page encryption is significantly less that the page fault’s overhead
for fetching the requested page from disk. Note that in our setup
we use a RAM file system instead of an actual disk, so a production
system may experience an even lower overhead.
The very low page fault rate for pages that contain executable

code makes the dynamic encryption a very appealing approach, as
it imposes practically zero runtime overhead, and at the same time
it supports shared libraries and transparently generates a new key
at each program execution.

5.2.2 Real-world Applications

We evaluated ASIST with two real-world applications. First, we
ran the lighttpd Web server in a vanilla system and in the two
versions of ASIST. We used another machine located in the local
network to repeatedly download 14 files of different sizes, ranging
from 1 KB to 8 MB, and we measured the average download time
for each file. Figure 8 shows the slowdown of the download time
as a function of the file size for each system. We see that ASIST
does not impose any considerable delay, as the download time re-
mains within 1% of the vanilla system for all files. We also no-
tice that both static and dynamic encryption implementations per-
form almost equally good. We measured the page faults caused by
lighttpd: 261 data page faults per second, and just 0.013 text
page fault per second. Thus, the dynamic encryption did not add
any runtime overhead to the server. Moreover, we observed that
most of the text page faults occur during the first few milliseconds
of the lighttpd execution, when the code is loaded into memory,
and then practically no text page fault occurs.

In our last benchmark we ran an sqlite3 database in the vanilla
and in the two ASIST setups. To evaluate the performance of
sqlite3 we used the C/C++ SQLite interface to implement a
simple benchmark that reads a large tab-separated file and updates
a table’s entries with the respective values. Figure 9 shows the
slowdown when inserting data into the database using this bench-
mark as a function of the number of insertions. ASIST imposes
less than 1% slowdown on the database’s operation for both static
and dynamic approaches, even on small datasets that do not provide
ASIST with enough time to amortize the encryption overhead.

6. RELATEDWORK
Instruction Set Randomization. ISR was initially introduced

as a generic defense against code injections by Kc et al. [31] and
Barrantes et al. [9, 10]. To demonstrate the feasibility of ISR, they
proposed implementations with bochs [33] and Valgrind [36]
respectively. Hu et al. [29] implemented ISR with Strata SDT
tool [42] using AES as a stronger encryption for instruction ran-
domization. Boyd et al. [13] propose a selective ISR to reduce the
runtime overhead. Portokalidis and Keromytis [41] implemented
ISR using Pin [34] with moderate overhead and shared libraries
support. In Section 2.3 we described in more detail all the existing
software-based ISR implementations and we compared them with
ASIST. ASIST addresses most of the limitations of the existing ISR
approaches owing to its simple and efficient hardware support.

Defenses against code injection attacks. Modern hardware
platforms support non-executable data protection, such as the No
eXecute (NX) bit [38]. NX bit prevents stack or heap data from
being executed, so it is capable to protect against code inject at-
tacks without performance degradation. However, its effectiveness
depends on its proper use by software. For instance, an application
may not set the NX bit on all data segments due to backwards com-
patibility constraints, self-modifying code, or bad programming
practices. We believe that ASIST can be used complementary to
NX bit to serve as an additional layer of security, e.g., in case that
NX bit may not be applicable or can be bypassed. For instance,
many ROP exploits use the code of mprotect() to make exe-
cutable pages with injected code, bypassing the NX bit protection.
This way, they can execute arbitrary code to implement the attack
without the need of more specific gadgets, which may not be easy
to find, e.g., due to the use of Address Space Layout Randomiza-
tion (ASLR). In contrast, these exploits cannot execute any injected
code in a system using ASIST, as this code will not be correctly en-
crypted. Thus, ASIST with ASLR provides a stronger defense.

0.90

0.95

1.00

1.05

1.10

1.15

1.20

1 2 4 8 16 32 64 128
256

512
1024

2048
4096

8192

S
lo

w
d
o
w

n

File size (KB)

Vanilla
ASIST-Static

ASIST-Dynamic

Figure 8: Slowdown when downloading different files from a

lighttpd Web server as a function of the file size. We see that

ASIST adds less than 1% delay for all file sizes.

0.90

0.95

1.00

1.05

1.10

1.15

1.20

128 256 512 1024 2048 4096 8192

S
lo

w
d
o
w

n

Table Insertions

Vanilla
ASIST-Static

ASIST-Dynamic

Figure 9: Slowdown when inserting data into sqlite3 as a func-

tion of the number of insertions. We see that ASIST experiences

less than 1% slowdown even for very small datasets.

A recent attack demonstrated by Snow et al. [47] is also able to
bypass NX bit and ASLR protection using ROP. First, it exploits
a memory disclosure to map process’s memory layout, and then it
uses a disassembler to dynamically discover gadgets that can be
used for the ROP attack. ASIST with ASLR, however, is able to
prevent this attack: even if memory with executable code leaks to
the attacker, the instructions will be encrypted with a randomly-
generated key. This way, attacker will not be able to disassemble
the code and find useful gadgets. ASIST ensures that key does not
reside in process’s memory, while stronger encryption algorithms
(like AES) can also fit in our design to avoid inferring the key.
SecVisor [43] protects the kernel from code injection attacks us-

ing a hypervisor to prevent unauthorized code execution. While
SecVisor focuses on kernel’s code integrity, ASIST prevents the
execution of unauthorized code in both user- and kernel-level.
Defenses against buffer overflow attacks. StackGuard [21]

uses canaries to protect the stack, while PointGuard [20] encrypts
all pointers while they reside in memory and decrypts them before
they are loaded into a register. Both techniques are implemented
with compiler extensions, so they require program recompilation.
In contrast, BinArmor [46] protects existing binaries from buffer
overflows without access to source code, by discovering the data
structures and then rewriting the binary.
Other randomization-based defenses. Address Space Layout

Randomization (ASLR) [39] randomizes the memory layout of a
process at runtime or at compile time to protect against code-reuse
attacks. Giuffrida et al. [27] propose an approach with address
space randomization to protect the operating system kernel. Bhatkar
et al. [11] present randomization techniques for the addresses of
the stack, heap, dynamic libraries, routines and static data in an
executable. Wartell et al. [52] randomize the instruction addresses
at each execution to address code-reuse attacks. Jiang et al. [30]
prevent code injections by randomizing the system call numbers.
Hardware support for security. There are numerous research

efforts aiming to provide hardware support for security without sac-
rificing performance. Dalton et al. [22, 23] propose a hardware-
based architecture for dynamic information flow tracking, by ex-
tending a SPARC V8 processor with four tag bits per each register
and memory word, as well as with tag propagation and runtime
checks to defend against buffer overflows and high-level attacks.
Greathouse et al. [28] present a design for accelerating dynamic
analysis techniques with hardware support for unlimited watch-
points. These efforts significantly reduce the performance cost for
dynamic information flow analysis, which has a very high overhead
in software-based implementations. Frantzen and Shuey [25] im-

plement a hardware-assisted technique for the SPARC architecture
to protect the return address. Tuck et al. [50] propose hardware en-
cryption to protect function pointers from buffer overflow attacks
with improved performance, extending the computationally expen-
sive software-based pointer encryption used by pointguard [20].
Our approach is similar to these works: we also propose hardware
support for another existing technique that prevents the execution
of any code that is not authorized to run in the system.

7. CONCLUSIONS
We have presented the design, implementation and evaluation of

ASIST: a hardware-assisted architecture for ISR support. ASIST is
designed to offer (i) improved performance, without runtime over-
head, (ii) improved security, by protecting the operating system
and resisting key guessing attempts, and (iii) transparent opera-
tion, with shared libraries support and no need for any program
modifications. Our experimental evaluation shows that ASIST does
not impose any significant overhead (less than 1.5%), while it is
able to prevent code injection attacks that exploit user-level and
kernel-level vulnerabilities. We have also proposed a new approach
for dynamic code encryption at the page fault handler when code is
first loaded into process’s memory. This approach transparently en-
crypts unmodified binaries that may use shared libraries with a new
key at each execution, offering protection against incremental key
guessing attacks. Our results indicate that dynamic code encryption
is efficient, without adding any overhead, due to the low text page
fault rate. Our work shows that ASIST can address most of the
limitations of existing software-based ISR implementations while
adding less than 0.7% additional hardware to a SPARC processor.
We believe that ASIST can be easily ported to other architectures
to strengthen existing defenses against code injection attacks.

Acknowledgments

We thank the anonymous reviewers for their valuable feedback.
We also thank the Computer Architecture and VLSI Systems Lab
of FORTH-ICS for providing access to FPGAs and design tools.
The project was co-financed by the European Regional Develop-
ment Fund (ERDF) and national funds, under the Operational Pro-
gramme “Competitiveness & Entrepreneurship” (OPCE II), Mea-
sure “COOPERATION” (Action I). This work was also supported
in part by the European Union’s Prevention of and Fight against
Crime Programme “Illegal Use of Internet” - ISEC 2010 Action
Grants, grant ref. HOME/2010/ISEC/AG/INT-002, and by the FP7
projects NECOMA and SysSec, funded by the European Commis-
sion under Grant Agreements No. 608533 and No. 257007.

8. REFERENCES

[1] The SPARC Architecture Manual, Version 8. www.sparc.com/
standards/V8.pdf.

[2] USA National Vulnerability Database. http://web.nvd.nist.
gov/view/vuln/statistics.

[3] Linux Kernel Remote Buffer Overflow Vulnerabilities. http://
secwatch.org/advisories/1013445/, 2006.

[4] OpenBSD IPv6 mbuf Remote Kernel Buffer Overflow. http://www.
securityfocus.com/archive/1/462728/30/0/threaded,
2007.

[5] Microsoft Security Bulletin MS08-067 – Critical. http://www.
microsoft.com/technet/security/Bulletin/MS08-067.

mspx, 2008.

[6] Microsoft Windows TCP/IP IGMP MLD Remote Buffer Overflow
Vulnerability. http://www.securityfocus.com/bid/27100,
2008.

[7] Microsoft security advisory (975191): Vulnerabilities in the ftp service in
internet information services. http://www.microsoft.com/
technet/security/advisory/975191.mspx, 2009.

[8] Microsoft security advisory (975497): Vulnerabilities in smb could allow
remote code execution. http://www.microsoft.com/technet/
security/advisory/975497.mspx, 2009.

[9] E. G. Barrantes, D. H. Ackley, S. Forrest, and D. Stefanović. Randomized
Instruction Set Emulation. ACM Transactions on Information and System
Security, 8(1), 2005.

[10] E. G. Barrantes, D. H. Ackley, T. S. Palmer, D. Stefanovic, and D. D.
Zovi. Randomized Instruction Set Emulation to Disrupt Binary Code
Injection Attacks. In ACM Conference on Computer and Communications
Security (CCS), 2003.

[11] S. Bhatkar, D. C. DuVarney, and R. Sekar. Address Obfuscation: an
Efficient Approach to Combat a Board Range of Memory Error Exploits.
In USENIX Security Symposium, 2003.

[12] T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang. Jump-Oriented
Programming: A New Class of Code-Reuse Attack. In ACM Symposium
on Information, Computer and Communications Security (ASIACCS),
2011.

[13] S. W. Boyd, G. S. Kc, M. E. Locasto, A. D. Keromytis, and V. Prevelakis.
On the General Applicability of Instruction-Set Randomization. IEEE
Transactions on Dependable Secure Computing, 7(3), 2010.

[14] E. Buchanan, R. Roemer, H. Shacham, and S. Savage. When Good
Instructions Go Bad: Generalizing Return-Oriented Programming to
RISC. In ACM Conference on Computer and Communications Security
(CCS), 2008.

[15] P. P. Bungale and C.-K. Luk. PinOS: A Programmable Framework for
Whole-System Dynamic Instrumentation. In ACM SIGPLAN/SIGOPS
Conference on Virtual Execution Environments (VEE), 2007.

[16] H. Chen, Y. Mao, X. Wang, D. Zhou, N. Zeldovich, and M. F. Kaashoek.
Linux Kernel Vulnerabilities: State-of-the-Art Defenses and Open
Problems. In Asia-Pacific Workshop on Systems (APSys), 2011.

[17] S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer. Non-Control-Data
Attacks Are Realistic Threats. In USENIX Security Symposium, 2005.

[18] S. Christey and A. Martin. Vulnerability Type Distributions in CVE.
http://cve.mitre.org/docs/vuln-trends/

vuln-trends.pdf, 2007.

[19] C. Cowan, M. Barringer, S. Beattie, G. Kroah-Hartman, M. Frantzen, and
J. Lokier. FormatGuard: Automatic Protection From printf Format String
Vulnerabilities. In USENIX Security Symposium, 2001.

[20] C. Cowan, S. Beattie, J. Johansen, and P. Wagle. PointguardTM:
Protecting Pointers from Buffer Overflow Vulnerabilities. In USENIX
Security Symposium, 2003.

[21] C. Cowan, C. Pu, D. Maier, H. Hintony, J. Walpole, P. Bakke, S. Beattie,
A. Grier, P. Wagle, and Q. Zhang. StackGuard: Automatic Adaptive
Detection and Prevention of Buffer-Overflow Attacks. In USENIX
Security Symposium, 1998.

[22] M. Dalton, H. Kannan, and C. Kozyrakis. Raksha: A Flexible Information
flow Architecture for Software Security. In ACM/IEEE International
Symposium on Computer Architecture (ISCA), 2007.

[23] M. Dalton, H. Kannan, and C. Kozyrakis. Real-World Buffer Overflow
Protection for Userspace & Kernelspace. In USENIX Security Symposium,
2008.

[24] D. Danchev. Managed polymorphic script obfuscation services. http://
ddanchev.blogspot.com/2009/08/

managed-polymorphic-script-obfuscation.html, 2009.

[25] M. Frantzen and M. Shuey. StackGhost: Hardware Facilitated Stack
Protection. In USENIX Security Symposium, 2001.

[26] Gaisler Research. Leon3 synthesizable processor. http://www.
gaisler.com.

[27] C. Giuffrida, A. Kuijsten, and A. S. Tanenbaum. Enhanced Operating
System Security Through Efficient and Fine-grained Address Space
Randomization. In USENIX Security Symposium, 2012.

[28] J. L. Greathouse, H. Xin, Y. Luo, and T. Austin. A Case for Unlimited
Watchpoints. In ACM Intrnational Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), 2012.

[29] W. Hu, J. Hiser, D. Williams, A. Filipi, J. W. Davidson, D. Evans, J. C.
Knight, A. Nguyen-Tuong, and J. Rowanhill. Secure and Practical
Defense Against Code-Injection Attacks using Software Dynamic
Translation. In ACM SIGPLAN/SIGOPS Conference on Virtual Execution
Environments (VEE), 2006.

[30] X. Jiang, H. J. Wangz, D. Xu, and Y.-M. Wang. RandSys: Thwarting Code
Injection Attacks with System Service Interface Randomization. In IEEE
International Symposium on Reliable Distributed Systems (SRDS), 2007.

[31] G. S. Kc, A. D. Keromytis, and V. Prevelakis. Countering Code-Injection
Attacks With Instruction-Set Randomization. In ACM Conference on
Computer and Communications Security (CCS), 2003.

[32] V. P. Kemerlis, G. Portokalidis, and A. D. Keromytis. kGuard:
Lightweight Kernel Protection Against Return-to-User Attacks. In
USENIX Security Symposium, 2012.

[33] K. P. Lawton. Bochs: A Portable PC Emulator for Unix/X. Linux Journal,
1996.

[34] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood. Pin: Building Customized
Program Analysis Tools with Dynamic Instrumentation. In ACM
SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), 2005.

[35] Nergal. The Advanced return-into-lib(c) Exploits: PaX Case Study.
Phrack, 11(58), 2001.

[36] N. Nethercote and J. Seward. Valgrind: A Framework for heavyweight
Dynamic Binary Instrumentation. In ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), 2007.

[37] J. Oberheide, M. Bailey, and F. Jahanian. PolyPack: An Automated Online
Packing Service for Optimal Antivirus Evasion. In USENIX Workshop on
Offensive Technologies (WOOT), 2009.

[38] L. D. Paulson. New Chips Stop Buffer Overflow Attacks. IEEE Computer,
37(10), 2004.

[39] PaX Tream. Homepage of PaX. http://pax.grsecurity.net/.

[40] P. Porras, H. Saidi, and V. Yegneswaran. Conficker C analysis. SRI
International, 2009.

[41] G. Portokalidis and A. D. Keromytis. Fast and Practical Instruction-Set
Randomization for Commodity Systems. In Annual Computer Security
Applications Conference (ACSAC), 2010.

[42] K. Scott, N. Kumar, S. Velusamy, B. Childers, J. W. Davidson, and M. L.
Soffa. Retargetable and Reconfigurable Software Dynamic Translation. In
International Symposium on Code Generation and Optimization:
Feedback-Directed and Runtime Optimization (CGO), 2003.

[43] A. Seshadri, M. Luk, N. Qu, and A. Perrig. SecVisor: A Tiny Hypervisor
to Provide Lifetime Kernel Code Integrity for Commodity OSes. In ACM
Symposium on Operating Systems Principles (SOSP), 2007.

[44] S. Sethumadhavan, S. J. Stolfo, A. Keromytis, J. Yang, and D. August.
The SPARCHS Project: Hardware Support for Software Security. In
SysSec Workshop, 2011.

[45] H. Shacham. The Geometry of Innocent Flesh on the Bone:
Return-into-libc without Function Calls (on the x86). In ACM Conference
on Computer and Communications Security (CCS), 2007.

[46] A. Slowinska, T. Stancescu, and H. Bos. Body Armor for Binaries:
Preventing Buffer Overflows Without Recompilation. In USENIX Annual
Technical Conference (ATC), 2012.

[47] K. Z. Snow, L. Davi, A. Dmitrienko, C. Liebchen, F. Monrose, and A.-R.
Sadeghi. Just-In-Time Code Reuse: On the Effectiveness of Fine-Grained
Address Space Layout Randomization. In IEEE Symposium on Security
and Privacy, 2013.

[48] A. N. Sovarel, D. Evans, and N. Paul. Where’s the FEEB? the
Effectiveness of Instruction Set Randomization. In USENIX Security
Symposium, 2005.

[49] Standard Performance Evaluation Corporation (SPEC). SPEC CINT2006
Benchmarks. http://www.spec.org/cpu2006/CINT2006.

[50] N. Tuck, B. Calder, and G. Varghese. Hardware and Binary Modification
Support for Code Pointer Protection From Buffer Overflow. In IEEE/ACM
International Symposium on Microarchitecture (MICRO), 2004.

[51] X. Wang, H. Chen, Z. Jia, N. Zeldovich, and M. F. Kaashoek. Improving
Integer Security for Systems with KINT. In USENIX Symposium on
Operating System Design and Implementation (OSDI), 2012.

[52] R. Wartell, V. Mohan, K. W. Hamlen, and Z. Lin. Binary Stirring:
Self-randomizing Instruction Addresses of Legacy x86 Binary Code. In
ACM Conference on Computer and Communications Security (CCS),
2012.

[53] Y. Weiss and E. G. Barrantes. Known/Chosen Key Attacks against
Software Instruction Set Randomization. In Annual Computer Security
Applications Conference (ACSAC), 2006.

[54] Xilinx. Xilinx University Program XUPV5-LX110T Development
System. http://www.xilinx.com/support/
documentation/boards_and_kits/ug347.pdf, 2011.

www.sparc.com/standards/V8.pdf
www.sparc.com/standards/V8.pdf
http://web.nvd.nist.gov/view/vuln/statistics
http://web.nvd.nist.gov/view/vuln/statistics
http://secwatch.org/advisories/1013445/
http://secwatch.org/advisories/1013445/
http://www.securityfocus.com/archive/1/462728/30/0/threaded
http://www.securityfocus.com/archive/1/462728/30/0/threaded
http://www.microsoft.com/technet/security/Bulletin/MS08-067.mspx
http://www.microsoft.com/technet/security/Bulletin/MS08-067.mspx
http://www.microsoft.com/technet/security/Bulletin/MS08-067.mspx
http://www.securityfocus.com/bid/27100
http://www.microsoft.com/technet/security/advisory/975191.mspx
http://www.microsoft.com/technet/security/advisory/975191.mspx
http://www.microsoft.com/technet/security/advisory/975497.mspx
http://www.microsoft.com/technet/security/advisory/975497.mspx
http://cve.mitre.org/docs/vuln-trends/vuln-trends.pdf
http://cve.mitre.org/docs/vuln-trends/vuln-trends.pdf
http://ddanchev.blogspot.com/2009/08/managed-polymorphic-script-obfuscation.html
http://ddanchev.blogspot.com/2009/08/managed-polymorphic-script-obfuscation.html
http://ddanchev.blogspot.com/2009/08/managed-polymorphic-script-obfuscation.html
http://www.gaisler.com
http://www.gaisler.com
http://pax.grsecurity.net/
http://www.spec.org/cpu2006/CINT2006
http://www.xilinx.com/support/documentation/boards_and_kits/ug347.pdf
http://www.xilinx.com/support/documentation/boards_and_kits/ug347.pdf

	Introduction
	Instruction Set Randomization
	Threat Model
	Defense with ISR
	Limitations of Existing Implementations

	ASIST Architecture
	Encryption
	Static Binary Encryption
	Dynamic Code Encryption
	Shared Libraries
	Self-Modifying Code
	Encryption Algorithms and Key Size
	Tolerance to Key Guessing Attacks

	Hardware Support
	Placement of the Decryption Unit
	Decryption Algorithms and Key Size
	Return Address Encryption

	Operating System Support
	Kernel Modifications
	Kernel Encryption

	ASIST Prototype Implementation
	Hardware Implementation
	Additional Hardware
	Kernel and Software Modifications
	Portability to Other Systems

	Experimental Evaluation
	Security Evaluation
	Performance Evaluation
	Benchmarks
	Real-world Applications

	Related Work
	Conclusions
	References

