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ABSTRACT
Graphical passwords that allow a user to unlock a smart-
phone’s screen are one of the Android operating system’s fea-
tures and many users prefer them instead of traditional text-
based codes. A variety of attacks has been proposed against
this mechanism, of which notable are methods that recover
the lock patterns using the oily residues left on screens when
people move their fingers to reproduce the unlock code. In
this paper we present a pilot study on user habits when set-
ting a pattern lock and on their perceptions regarding what
constitutes a secure pattern. We use our survey’s results to
establish a scheme, which combines a behaviour-based at-
tack and a physical attack on graphical lock screen methods,
aiming to reduce the search space of possible combinations
forming a pattern, to make it partially or fully retrievable.

Categories and Subject Descriptors
D.4.6 [Software]: Operating Systems—Security and Pro-
tection

General Terms
Security, Human Factors

Keywords
Android, smudge attacks, usability, pattern lock

1. INTRODUCTION
Nowadays, passwords are integrated in people’s routines.

Humans authenticate themselves using keyboards, finger-
print readers or touchscreens. Smartphones hold an impor-
tant amount of information about the owner and for this
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reason people tend to lock them using the provided mech-
anisms. In most cases, phone lock mechanisms are imple-
mented either as a PIN or a password.

Contemporary smartphones using the Android Operating
System adopt a type of lock mechanism different to tradi-
tional PIN codes. This approach, called ‘pattern lock’, is
based on existing research on graphical passwords [2] and
requires the user to form a pattern on the screen by drawing
lines in order to unlock the device. Its interface consists of 9
nodes in a 3x3 grid formation. Users start by touching one
of the dots to make it the start point and swipe their fingers
to add dots and form a pattern. However, there are some
constraints while setting a scheme. It takes a minimum of 4
and a maximum of 9 dots to create one, each node can be
visited only once and a previously not visited node becomes
visited if it is on the way of a horizontal, vertical or diagonal
line. Due to these constraints, the total number of possible
patterns is 389,112 [1].

There are various types of attacks that can be used against
a device to retrieve its pattern lock. Typical security at-
tacks would entail attempts to exploit flaws in the theoreti-
cal design of a scheme or brute force a security mechanism.
Brute forcing attacks against PINs or pattern locks may be
rendered ineffective, if the number of unsuccessful attempts
permitted is very limited and the device locks after that.
Attacks that do not rely on brute forcing or exploiting a de-
sign weakness, but instead, are based on information gained
from the physical implementation of a security scheme, are
called side channel attacks. Some of such physical attacks
against pattern locks aim to retrieve a pattern using physi-
cal traces left by the user, e.g. fingerprint marks left on the
device’s screen [11]. Others, such as psychological attacks,
aim to detect user bias in PIN and pattern setting. Such in-
formation could be used to drastically limit the search space
of possible combinations, in the same manner that heuristics
about the use of meaningful passwords (e.g. familiar words)
reduce the search space of a brute-force password attack [5].

In this paper, we attempt to combine physical attacks that
relate to traces left from the use of a phone, with heuristics
about the way users set lock patterns in order to facilitate
attacks on this security mechanism. We use an optical cam-
era and a microscope to analyse oily residues left on the
screen, to evaluate the effectiveness of such relatively mid-
term lived physical traces. We also exert a thermal camera
to analyse heat traces left on the screen after drawing a
pattern (shorter-term lived traces). To enhance the effec-
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tiveness of the physical examination, we exploit outcomes
of trends related to the setting of pattern locks. There-
fore, we analyse the average pattern length, the number of
direction changes when drawing patterns, the start points,
end points and sub-patterns with length one to four nodes.
To achieve this we conducted a pilot survey collecting data
from 144 participants, indicating that there exist useful de-
tectable trends when people try to form such a password. We
therefore demonstrate that the combination of physical and
psychological attacks can diminish the security efficiency of
the pattern lock, revealing parts or the whole of a pattern.

The rest of this paper is organised as follows. In sec-
tion 2, we discuss relevant research considering attacks on
passwords. In section 3 we present our experiments to at-
tack Android’s graphical password scheme. In section 4 we
present a preliminary evaluation of the proposed combina-
tion of physical and psychological-based attacks. The con-
clusion is drawn in section 5 and ideas for further work are
also discussed.

2. BACKGROUND

2.1 Text-based and Graphical Passwords
Text-based passwords and PIN codes are normally cou-

pled with bank accounts, computational devices etc. In-
dividuals posses several accounts and numerous passwords
that need to remember. Thus, the users often have to bal-
ance usability with security. As a consequence, they may
recall another account’s password [8] or even worse use the
same across all their accounts [2]. If a word-like password is
chosen, it may be possible for an attacker to retrieve it by us-
ing dictionary based attacks. On the other hand, if random
characters have been set as password, it is highly likely that
the user will fail to fully remember the sequence [8]. This
renders text-based passwords hard for the legitimate user
and easy for the attacker. Another aspect that makes the
text-based passwords hard to remember is the way the hu-
man brain works. According to Dual Coding Theory, cogni-
tion is composed of two separate parts: nonverbal and verbal
systems [4]. Having different systems in the brain to process
the verbal and nonverbal information, humans perform dif-
ferently in these two ways when it comes to remembering.
Text requires an additional process of associating symbols
with a contextual meaning [2].

Graphical passwords may come in much more variety com-
pared to text-based solutions. They can include procedures
such as clicking some points on an image, drawing a line
or a shape. The most important advantage they provide is
the possibility to define a password in a way that is mem-
orisable by the user and yet, still hard to guess by the at-
tacker. However, graphical passwords can also have their
weaknesses, if we take into consideration the fact that users
may select their graphical passwords with respect to some
meaningful process. Thus, human psychology can be asso-
ciated with the choice of a graphical password. Studies on
image-based graphical passwords show that humans tend to
choose popular points (called hotspots) on the image [10].
In their experiments, Thorpe and van Oorschot [10] argue
that there are some general hotspots and areas on images
that people tend to select. Furthermore, they are trying to
answer the question if we can successfully build brute-force
dictionary attacks on graphical passwords by defining weak
password subspaces and applying attacks using complexity

properties, such as password length, number of components,
and symmetry [7]. Their predictive model leads to password
rules and propose a set of precautions to increase security.

Another study provides 9 different face images to users
and lets them choose 4 of them in a sequence to form a pass-
word [3]. Using this ‘face selection’ mechanism, they collect
passwords from 79 participants. The results are significant
and show that a number of passwords set by males can be
easily guessed in 2 attempts. The fact that humans have
similar preferences on graphical passwords provides reason-
able grounds to investigate if there exist sub-patterns pre-
ferred by users when forming a pattern lock.

2.2 Methods of Pattern Lock Retrieval
Android’s pattern lock mechanism relies on users swiping

their finger to unlock the device. This action leaves behind
an oily residue or smudges. Relevant research on retrieving
lock patterns using standard optics is conducted by Aviv
et al. [1]. In their work, they demonstrate how recovering
smudges using a light source and a digital camera is possible
due to the fact that touchscreen surfaces are reflective rather
than diffusive. Experimenting with directional and omnidi-
rectional light sources and testing angles ranging from 0◦ to
180◦, by taking pictures at steps of 15◦, they found out that
the smudges were visible in most cases when a directional
light source was used. Omnidirectional light sources prove to
create a full reflection effect at all angles rendering this type
of light source unusable. Apart from the ideal photograph
capturing angles to retrieve smudges, the experiments focus
on various states of a touchscreen such as: pattern entered
using normal or light touches by the user, pattern entered
before or after phone usage. Note that the notions of ‘nor-
mal’ and ‘light’ touches are not quantitative in this study,
and thus must be intuitively guessed. For this reason, we
assume the light touch stands for intentionally low pressure
touches to minimise any smudge left behind, whilst the nor-
mal touch is the one made without any concern of leaving a
smudge behind.

The smudge persistence of the patterns was tested on two
phones. It is indicative that different touchscreen surfaces
of Android phones (even from the same manufacturer) may
have different properties with respect to capturing and re-
taining physical traces. When all angle setups are taken into
consideration they derive that the best angle to retrieve a
pattern is 60◦ with 80% of the lighting scenarios resulting
in nearly perfect retrieval [1]. It is also noted that the di-
rectionality was discernible which is particularly important
because it decreases the number of attempts to unlock the
device. Their results highlight that intentionally cleaning
with cloth or putting the phone to pocket was not enough
to prevent pattern retrieval. It is important to mention that
the researchers preferred describing the process as ‘simple
clothing’, which probably means that the results may not
hold true when the screen is rubbed thoroughly. Overall the
optical method is particularly efficient as all it requires is a
directional light source and a digital camera. An attacker
can easily and quickly capture a photo of the touchscreen
from a useful angle and perform any necessary contrast and
brightness adjustments on the photo to retrieve one’s pat-
tern lock. As discussed in [1], even if the pattern is only
partially retrievable, multiple photos taken in different times
may reveal the full pattern.

The use of a thermal camera to retrieve the PIN codes
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is an already existing attack on other devices such as ATM
keypads (Mowery et al. [6]). Although there are two key-
pads for testing, one being metal and the other plastic, the
tests are carried out on the plastic keypad as it is indicated
that the metal keypad’s conductivity renders it impervious
to attack. Data gathered from 21 people and 27 PIN com-
binations display that the heat transferred to the keypad
depends on the amount of pressure exerted to the keys as
well as the warmth of the hand. However, the heat of the
ATM was not taken into consideration as the keypad is used
as an isolated test bed, without being wired to or placed on
any electronic device. The thermal image shows a clear dis-
tinction between the background and the touched keys and
right after the PIN entry, it displays with no hassle which
buttons (and in which order) are pressed. An important
aspect of thermal images is that they may be useful in situ-
ations where it is not possible to retrieve the smudges using
standard optics, in a dimly lighted place, for instance.

3. EXPERIMENTS AND RESULTS

3.1 Physical Attacks
We tried to replicate Aviv et al.’s [1] methods using a dif-

ferent camera and smartphone. We used a Samsung Galaxy
S featuring a Gorilla Glass screen (which is widely used
by different manufacturers), a Panasonic Lumix DMC-TZ5
compact camera to conduct the attacks and a hard light
source to achieve edged shadows. The objective in this sec-
tion is to confirm previous work and for this reason the same
person first draws the patterns and then conducts the attack
in an open environment, with photos taken from a 60◦ angle.
We performed an optical camera attack on three different
surface conditions in terms of cleanliness. The first one was
an attempt to retrieve the pattern drawn on a clean screen.
It is evident that the pattern can be fully retrieved without
any difficulty at this stage. The second test adds a light clean
up to the first state. The ‘lightness’ of the clean up is indeed
subjective and, in our case, we aim to mimic a person casu-
ally cleaning the device’s screen without the specific intent
of removing any oily residues. The oily residues turned to be
quite resistant against simple cleaning attempts. Therefore,
although the pattern can fade slightly, it can still be almost
fully retrieved (some nodes might disappear). The final test
was conducted on a heavily cleaned up surface. For this test
we mimic a person determined to clean all the smudges on
the screen at once. In this attempt most of the pattern is
lost, except some diagonal lines. Due to increased entropy,
it is also not possible to tell the directionality of the pat-
tern. Therefore, we conclude that it is possible to capture
patterns using compact optical cameras in most of the cases
where the phone is not heavily used or cleaned and where
there is efficient lighting.

For the microscope attack experiment, we used a USB mi-
croscope with 400x magnification. Our experiments followed
the same logic we used for the optical attack. However, in
the microscope case, we assume that the attackers have al-
ready seized the smartphone and are able to investigate the
screen in a laboratory as long as desired. Similar to optical
camera results, the microscope performed well during the
first two cases. Lines and directionalities were very easily
seen (full retrieval). There is, however, loss of some detail af-
ter the first clean up. For the heavy clean up case the micro-
scope performed slightly better than the camera providing

more details of smudge residues, but assuming that attackers
can make use of a Digital Single-Lens Reflex (DSLR) cam-
era in a controlled environment, it is highly likely to gather
similar results without the need of a microscope.

The goal of the thermal image attack was to retrieve the
pattern by examining the heat trace left by the finger on
the device surface. The camera we used was a FLIR E30
and the experiments have been conducted from a distance
of approximately 1 meter. The ambient temperature was
26◦C, the light was low and no direct sunlight was coming
to or near the device. Since time and heat are the main
factors that contribute to form the results, the test cases
were different than the previous: drawing a pattern on an
idle device and drawing a pattern on a recently used device.
The first scenario experiments revealed that it is possible to
retrieve parts of a pattern via thermal imaging. We man-
aged to observe the heat trace for 3 seconds after the pattern
was drawn. However, we were unable to extract the pattern
from a recently used device. When the device runs for a
short period of time, its CPU starts to emit a considerable
amount of heat. This in turn, heats up the upper and centre
parts of the device rendering finger’s heat untraceable. Even
in the idle state, the CPU part of the device is considerably
hotter. Consequently, the top three dots are hard to detect
in most circumstances. To conclude, whilst it may not be
a preferable attack compared to other options, a thermal
attack might be used in the future, as the sizes of manufac-
tured components diminishes and chip voltages are lowered.

3.2 User Tradeoffs between Security and Us-
ability for their Choice of Pattern Locks

In order to study the effect of psychological or behavioural
factors on pattern setting we conducted a web-based survey.
This method was chosen because the participant does not
need to own a specific smartphone. We used JavaScript,
PHP, and AJAX to create the web-based survey and on the
server side we held a MySQL database to store the given
data. The pattern lock simulation utilised RaphaëlJS, which
is a vector graphics library for drawing objects. The re-
sults presented in our work are calculated after filtering the
database from irrelevant entries (144 unique participants).
The survey started with basic demographics, continued with
questions about participants’ smartphone experience and
their opinion on the notion of device locking and finalised
after two pattern entries. The first was a pattern the user
thought would be easy to remember and the second was a
pattern that the user thought would be a secure password.

Summarising the findings of the survey we deduce that
65.97% were males and 34.03% females. The majority of
the users were aged between 18 and 29 inclusive (81.25%)
and the next more frequent age bracket was 30-49 (15.28%).
This figure was expected because the survey was promoted
through social media and through a university mailing list.
79.86% of the participants have owned a smartphone at least
once, 92.17% of which still own a smartphone. Among them,
48.11% currently use iOS and 40.57% use Android. Sym-
bian and Blackberry follow with 5.67% and 3.78% respec-
tively. The people who ever owned an Android smartphone
had at least one year of experience with it. 47.22% of the
participants with a smartphone use any type of screen lock
whereas 52.78% do not. The basic reasons they use a screen
lock is to protect personal data and prevent others fiddling
with the device. 65.98% of the participants believe that the
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Table 1: Average pattern lengths and standard deviations.

Group
Average Length Standard Deviation
Secure Easy Secure Easy

Females 6.16 5.94 1.87 1.75
Males 6.89 6.32 1.91 1.94
Total 6.64 6.19 1.92 1.88

Table 2: Average number of direction changes (all users).

Average Changes Standard Deviation
Secure Easy Secure Easy
3.57 2.74 1.65 1.59

highest risk that would compromise a lock is shoulder surf-
ing. Smudges left on the screen and cameras in the room
have the same rating of being the highest risk with 15.97%,
yet the former has been selected more times as the second
highest risk compared to the latter, rendering it the second
highest risk after the shoulder surfing. Furthermore, 57.64%
of the participants thought the secure pattern they entered
is usable in everyday life, while 42.36% did not. Finally,
35.42% of the participants thought that the easy pattern
they entered was secure enough, while 64.58% did not.

3.3 Secure Pattern Analysis

3.3.1 Pattern Length and Direction Changes
As part of our analysis, we calculated the average pattern

length of the secure and easy patterns (and their standard
deviations). The average length calculated by summing the
number of dots used and dividing that value to the number of
participants. While the average pattern length for a secure
pattern drawn by a male participant is 6.88 dots, females
averaged 6.16 dots. The same situation can be observed in
easy patterns: the average among males is 6.32 dots while
among females it is 5.94 dots. The total average lengths
for secure and easy patterns are 6.64 and 6.19 respectively
(Table 1). Results indicate that there may be a difference
in perception of secure pattern length and direction between
male and female participants. As part of our future work, we
are planning to test the statistical significance of this claim,
using a larger number of participants. Another indication
of a pattern’s security efficiency is the number of direction
changes made per pattern (Table 2). We assume that for
humans, a direction change is a more difficult move than
following a direct line. Consequently, we deduce that when
a user makes more direction changes in a pattern, then it
gets more complex, hence more secure. The average num-
ber of direction changes made in a secure pattern is 3.57
and the average number of direction changes made in an
easy pattern is 2.74. This finding demonstrates that secure
patterns have more direction changes with respect to their
lengths, rendering them more complex.

3.3.2 Entropy
In the following sections of survey data analysis, we cal-

culated the Shannon’s entropy while studying sub-patterns,
start and end points for the secure patterns. For mono-
grams, start and end points, entropy is calculated based on
the probability of point X being selected in the pattern or
being the start (or end) point. For N-grams, we calculated

conditional entropy, whereby the probability of point X ap-
pearing N th in the pattern is dependent on which N-1 points
have been used in the pattern so far.

With that in mind, for conditional entropy calculations
(FN : N-gram entropy), we used Shannon’s formula [9]:

FN = −
∑
i,j

p(bi, j) log2 p(bi, j) +
∑
i

p(bi) log2 p(bi) (1)

in which bi is an (N-1)-gram (a pattern that consists of N-1
nodes), j is an arbitrary node (following b1) that has not
yet been chosen and p(bi, j) is the probability of the N-gram
bi, j. Note that in the case of sub-patterns, we consider
p(bi, j) as p(bi||j), where || stands for concatenation.1 For
instance, if the bigram is bi = “01” and j = “2”, then

p(bi, j) = p(“012”) =
# of occurrences of trigram “012”

sum of occurrences of all trigrams

3.3.3 Start and End Points
An interesting observation from the survey is the way par-

ticipants preferred to start their secure patterns (Figure 1a).
More than half of them (52.08%) started their secure pat-
terns from the top left node. The entropy of the start points
is 2.35 bits compared to a maximum of log2 9= 3.17 bits, for
which all the dots must have the same probability. This im-
poses heavy bias and makes the first dot highly predictable.
It is important to note that the survey did not examine
whether the user is right-handed, left-handed or ambidex-
trous (we will examine that in subsequent iterations of the
survey). Additionally, the survey could be filled either by
using a mobile device or a computer, which means partici-
pants might have used a mouse to draw the pattern. Nev-
ertheless, participants consistently chose the top left dot as
the starting point. A reason for this clustering can be linked
to participants’ geographical positions. Most of the entries
in our pilot run originate from across Europe and the United
States. Most of these countries’ native alphabets consist of
Latin characters and consequently, their writing starts from
the top left corner and ends in the bottom right. In addi-
tion, the survey’s language is English, which may make the
participants think in Latin language style even if they have
a non-Latin based native alphabet. As a result, they may
be inclined to start from the top left, because this looks like
a more natural starting point. The collection of data from
participants that have top-to-bottom or right-to-left native
languages would provide interesting results in the future.

We then checked the ending dots for secure patterns. Even
though there was no single dot on which most participants
preferred to end their secure pattern, the bottom right was
the most selected node with 20.83% (Figure 1b). The en-
tropy calculated is 3.00 bits for the probabilities of end
points. The ending dots were mostly focused on right and
bottom. From this observation we deduce that the most fre-
quent paths before the ending node can be found between
the top right and the bottom right dot. As expected, these
results also conform to the assumption about the Latin al-
phabet made on the analysis of start points.

3.3.4 Sub-patterns Analysis
One of the main objectives of the current work was to

investigate the possibility to find reccurring sub-patterns

1Android’s screen lock pattern nodes are represented with
numbers starting with 0 from the top left node.
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(a) Start points (b) End points (c) Monograms

Figure 1: Node usage (radius depicts frequency).

within the responses (focused on secure patterns). Extract-
ing these sub-patterns would allow an attacker to guess a
partially retrieved pattern’s missing parts easier. In other
words, an attacker can incorporate the physical attacks with
the behavioural attacks to fully retrieve the pattern. The
first step of our sub-pattern analysis involves monograms.
We estimated the frequency of appearance of each dot to
explore the existence of any particular nodes that are fre-
quently chosen (Figure 1c). The result depicts that there is
no significant bias towards any of the dots; they are more
or less equally used in patterns, hence monogram entropy
is 3.16 bits. We then looked for bigrams, a sub-pattern
consisting of two dots. Since bigrams and other longer n-
grams create a path, the directionality of the path is taken
into account during analysis. There have been some bi-
grams that occurred especially frequently in patterns col-
lected. In Fig. 2a, path width depicts the frequency of that
particular bigram. In this case, the thickest path represents
that 32.64% of the participants drew that bigram, while the
thinnest represents 23.61%. Using Shannon’s entropy, bi-
gram entropy is calculated as 5.47 - 3.16 = 2.31 bits. The
maximum entropy for the bigrams is log2 72 = 6.17bits. Out
of 72 possible combinations 64, of them were drawn at least
by one participant. Continuing with trigrams, the analy-
sis shows that 18.75% of the participants drew a path from
the top left dot to top right dot at one point of their pat-
terns. The thinnest path in Figure 2b represents 14.58% of
the participants. The trigram entropy is 6.99 - 5.47 = 1.32
bits. Maximum trigram entropy is log2 504 = 8.98bits. Out
of 504 possible combinations, 203 were drawn at least by
one participant. Finally, we conducted a four-gram analy-
sis. Three four-grams stood out of the rest with two of them
being drawn by 9.02% of the participants and the other be-
ing drawn by 7.64% (Figure 2c). Thus, it is easy to spot a
trend towards left to right and top to bottom in these sub-
patterns, which contributes to the assumptions made on the
psychological behaviour the participants display. The four-
gram entropy is 7.75 - 6.99 = 0.76 bits. Maximum fourgram
entropy is log2 3024 = 11.56bits.

4. EVALUATION OF THE RESULTS
Our next step was to integrate our physical experiments

and survey findings to propose a scheme, which could in-
crease the success of such a combination of ‘soft’ and ‘hard’
side-channel attack on lock patterns. A common physical at-
tack using an efficient optical camera combined with a psy-
chological attack utilising the results of our survey should
reduce the number of possible combinations and make pat-
tern retrieval more efficient.

(a) Bigrams (b) Trigrams (c) Fourgrams

Figure 2: Most frequently drawn paths (‘secure’ patterns).

Table 3: Recovery of features.

Optical Attack Number Percentage
0 - 49% of pattern 5/22 22.73%
50 - 99% of pattern 5/22 22.73%

100% of pattern 12/22 54.54%
Total Recovery 18/22 81.82%

Phychological Number Percentage
Start point 18/22 81.82%
End point 11/22 50.00%
Bigrams 12/22 54.54%
Trigrams 7/22 31.81%

Fourgrams 4/22 18.18%
Direction (C) 14/22 63.63%

Total Retrieval 20/22 90.9%

To evaluate our proposed attack scheme we conducted a
new experiment and derived data from a new set of 22 par-
ticipants, which were not among those who took part on the
web-survey. 15 of them (68.2%) were males and 7 (31.8%)
females. 86.4% were aged between 21-30 and the age of the
rest was 31-40 years old. The participants came from Eu-
rope (59.1%), Asia (31.8%) and America (9.1%). The exper-
iment took place at a laboratory. They were asked to think
of a secure pattern that they would probably use on their
smartphones and then apply it on a real device. We copied
and drew their patterns on paper and took photographs of
the smartphone screen for further analysis. We marked the
drawings with serial numbers before taking the photographs
to ensure anonymity. The scenario we investigated assumes
light usage of the phone after the pattern was entered, thus,
before the photograph was taken we rubbed the screen gen-
tly on a cotton surface. We used an HTC Desire smartphone
and a Nikon D40x DSLR camera for this experiment.

During the analysis of our data we investigated the corre-
lation between the behavioural trends described in section
3 and smudges left on the screen. We used the following
sequence. First, we set the reference standards for this ex-
periment. The presented data in Figure 1 show that the 4
most preferred start points are the corners of the screen. In
addition, the 4 most visited end points are those located at
the right hand side and also the bottom left node. Finally,
we took into account the most preferred N-grams (Figure
2). At the first step of the investigation the nodes and the
edges of each pattern were recovered by scholastically ana-
lyzing the photograph of the given schema (optical). Then,
we compared the findings of the former examination with our
reference standards by looking at the drawing we had made
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Table 4: Feature recovery of irretrievable patterns.

Physical attack Number Percentage
Start point 4/4 100%
End point 3/4 75%
Bigrams 3/4 75%
Trigrams 3/4 75%

Fourgrams 1/4 25%

for the specific pattern. The gathered information answered
the question whether the pattern used a common start and
end node and whether common N-grams have appeared. If
at least one edge of the examined pattern was recovered ei-
ther by the optical or the behavioral attack, then we can say
that we achieved a partial retrieval. Table 3 demonstrates
the results of our examinations.

The use of camera revealed, either fully or partially, 18/22
(81.81%) patterns. The psychological attack confirmed that
81.81% of the participants started their passwords using the
most common start points and half of them ended their pat-
terns at the expected end points. The average direction
changes for males were 3.19, for females 2.83 and average
pattern length for males was 7 and for females 6.33. We
also saw some of the most common bigrams, trigrams and
4-grams presented in section 3 (popular bigrams were more
frequent: 54.5%). Finally, the combination of the two at-
tacks resulted in full or partial retrieval of 20/22 patterns
and 100% of the patterns contained at least one of the ref-
erence standards.

This statistic shows that combining our web-survey results
with well-known physical attacks we can increase the possi-
bility to recover a pattern. We investigated the 4 patterns
for which the optical attack did not reveal any information.
Table 4 provides the results that justify the assumption that,
even without any physical information, the psychological at-
tack can still narrow-down the search space. One can argue
about the sample size (4 patterns) but table 4 provides an
indication that in most of the cases it is possible to retrieve
parts of a pattern. At this table we present the success of
the behavioural attack on the patterns that were not re-
coverable by optical attack. We can see that all of them
contain at least one of the reference standards and specifi-
cally all contained an expected start point and also, most of
them included at least one bigram, trigram and end point.

5. CONCLUSIONS AND FUTURE WORK
We successfully managed to attack an Android pattern

lock using various physical attacks. We argue that currently
an optical camera or a microscope are the best ways to per-
form physical attacks and produce quality results. Addi-
tionally, we have observed that humans tend to use specific
heuristics when they form their lock patterns. We deduce
that these heuristics are biased from aspects of peoples’ con-
text (e.g. spoken language). Our research demonstrated that
it is possible to use the conclusions of our survey to increase
the effectiveness of recovering patterns when combined with
a successful physical attack. Further work has to be done to
create a more global research, which will include other pa-
rameters that may be of significance, such as the user’s edu-
cational level, geographical location and other demographic
features. In our evaluation we underlined a trend to clock-
wise draw a pattern but this is an observation that must be

further examined in the future. It would be also interesting
to design a brute force attack model to allow a legitimate
user to recover the pattern combining the artifacts found on
the screen with the findings of the current research.
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